Semin Liver Dis 2001; 21(4): 489-500
DOI: 10.1055/s-2001-19037
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Fatty Acid Transport and Mitochondrial Oxidation Disorders

Piero Rinaldo
  • Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, Rochester, Minnesota
Further Information

Publication History

Publication Date:
17 December 2001 (online)

ABSTRACT

Inborn errors of fatty acid transport and mitochondrial oxidation (FATMO) represent a group of metabolic disorders that has brought forward many interesting developments in recent years, particularly the discovery of several new defects and the recognition of an ever-increasing spectrum of clinical phenotypes. The impact of newborn and postmortem screening in preventing morbidity and mortality is now recognized beyond specialized academic centers and has emerged as a staple of general pediatric practice. This review focuses on the biochemical basis and clinical manifestations of these disorders, particularly maternal complications of pregnancy, the increasingly complex process of laboratory evaluation, and a synopsis of two recently discovered defects: long-chain fatty acid transport/binding defect and medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency. Although our understanding of these new disorders is still incomplete, they nevertheless appear to have a more than casual relationship with acute liver failure in pediatric patients.

REFERENCES

  • 1 Distel R J, Robinson G S, Spiegelman B M. Fatty acid regulation of gene expression.  J Biol Chem . 1992;  267 5937-5941
  • 2 Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondrial β-oxidation.  Biochem J . 1996;  320 345-357
  • 3 Berk P D, Stump D D. Mechanisms of cellular uptake of long chain free fatty acids.  Mol Cell Biochem . 1999;  192 17-31
  • 4 Stahl A, Gimeno R E, Tartaglia L A. Fatty acid transport proteins: a current view of a growing family.  Trends Endocr Metab . 2001;  12 266-273
  • 5 Bremer J. The role of carnitine in cell metabolism. In: De Simone C, Famularo G, eds. Carnitine Today Austin, TX: RG Landes Company, 1997: 1-37
  • 6 Ramsay R R, Gandour R D, van der Leij R F. Molecular enzymology of carnitine transfer and transport.  Biochim Biophys Acta . 2001;  1546 21-43
  • 7 McGarry J D, Brown N F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis.  Eur J Biochem . 1997;  244 1-14
  • 8 McGarry J D, Foster D W. Regulation of hepatic fatty acid oxidation and ketone body production.  Ann Rev Biochem . 1980;  49 395-420
  • 9 Mitchell G A, Fukao T. Inborn errors of ketone body metabolism. In: Scriver CR, Beaudet AL, Sly WS, et al., eds. The Metabolic and Molecular Bases of Inherited Disease, 8th ed New York: McGraw-Hill 2001: 2327-2356
  • 10 Saudubray J M, Mitchell G, Bonnefont J. Approach to the patient with a fatty acid oxidation disorder.  Prog Clin Biol Res . 1992;  375 271-288
  • 11 Rinaldo P, Raymond K, Al Odaib A. Fatty acid oxidation disorders: clinical and biochemical features.  Curr Opin Pediatr . 1998;  10 615-621
  • 12 Bennett M J, Rinaldo P, Strauss A W. Inborn errors of mitochondrial fatty acid oxidation.  Crit Rev Clin Lab Sci . 2000;  37 1-44
  • 13 Rinaldo P, Matern D. Disorders of fatty acid transport and mitochondrial oxidation: challenges and dilemmas of metabolic evaluation.  Genet Med . 2000;  2 338-344
  • 14 Treem W R. Inborn defects in mitochondrial fatty acid oxidation. In: Suchy FJ, Sokol RJ, Balistreri WF, eds. Liver Disease in Children, 2nd ed Philadelphia: Lippincott, Williams & Wilkins 2001: 735-785
  • 15 Stanley C A, Hale D E, Coates P M. Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels.  Pediatr Res . 1983;  17 877-884
  • 16 Autret-Leca E, Jonville-Bera A P, Llau M E. Incidence of Reye's syndrome in France: a hospital-based survey.  J Clin Epidemiol . 2001;  54 857-862
  • 17 Boles R G, Buck E A, Blitzer M G. Retrospective biochemical screening of fatty acid oxidation disorders in postmortem liver of 418 cases of sudden unexpected death in the first year of life.  J Pediatr . 1998;  132 924-933
  • 18 Chace D H, DiPerna J C, Mitchell B L. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death.  Clin Chem . 2001;  47 1166-1182
  • 19 Rinaldo P. Mitochondrial fatty acid oxidation disorders and cyclic vomiting syndrome.  Dig Dis Sci . 1999;  44(suppl) 97-102
  • 20 Al Odaib A, Shneider B L, Bennett M J. A defect in the transport of long-chain fatty acids associated with acute liver failure.  N Engl J Med . 1998;  339 1752-1757
  • 21 Ibdah J A, Bennett M J, Rinaldo P. A fetal fatty acid oxidation disorder causes maternal liver disease of pregnancy.  N Engl J Med . 1999;  340 1723-1731
  • 22 Knox T A, Olans L B. Liver disease in pregnancy.  N Engl J Med . 1996;  335 569-576
  • 23 Rinaldo P, Studinski A, Matern D. Prenatal diagnosis of disorders of fatty acid transport and mitochondrial oxidation.  Prenat Diagn . 2001;  21 52-54
  • 24 Sattar N, Gaw A, Packard C J. Potential pathogenic roles of aberrant lipoprotein and fatty acid metabolism in pre-eclampsia.  Br J Obstet Gynaecol . 1996;  103 614-620
  • 25 Sattar N, Bendomir A, Berry C. Lipoprotein subfraction concentrations in preeclampsia: pathogenic parallels to atherosclerosis.  Obstet Gynecol . 1997;  89 403-408
  • 26 Shambaugh 3rd E G. Ketone body metabolism in the mother and fetus.  Fed Proc . 1985;  44 2347-2351
  • 27 Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn.  Diabetes Metab Res Rev . 2000;  16 202-210
  • 28 Shekawat P S, Bennett M J, Rakheja D. Fatty acid oxidation (FAO) in normal human placenta: Developmental expression and activity of enzymes of mitochondrial β-oxidation [Abstract].  Pediatr Res . 2001;  49 55
  • 29 Rinaldo P, Matern D, Bennett M J. Fatty acid oxidation disorders.  Ann Rev Physiol (in press).
  • 30 Strauss A W, Bennett M J, Rinaldo P. Inherited long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and a fetal-maternal interaction cause maternal liver disease and other pregnancy complications.  Semin Perinatol . 1999;  23 100-112
  • 31 Rinaldo P. Laboratory diagnosis of inborn errors of metabolism. In: Suchy FJ, Sokol RJ, Balistreri WF, eds. Liver Disease in Children, 2nd ed Philadelphia: Lippincott, Williams & Wilkins 2001: 171-184
  • 32 Patel J S, Leonard J V. Ketonuria and medium-chain acyl-CoA dehydrogenase deficiency.  J Inherit Metab Dis . 1995;  18 98-99
  • 33 Lagerstedt S A, Hinrichs D R, Batt S M. Quantitative determination of plasma C8-C26 total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders.  Mol Genet Metab . 2001;  73 38-45
  • 34 Jones P M, Quinn R, Fennessey P. An improved method for measuring serum or plasma free 3-hydroxy-fatty acids using stable isotope dilution gas chromatography-mass spectrometry and its utility for the study of disorders of mitochondrial fatty acid β-oxidation.  Clin Chem . 2000;  46 149-155
  • 35 Bonnefont J P, Specola N B, Vassault A. The fasting test in paediatrics: application to the diagnosis of pathological hypo and hyperketotic states.  Eur J Pediatr . 1990;  150 80-85
  • 36 Olpin S E, Manning N J, Pollitt R J. The use of [9,10-3H]myristate, [9,10-3H]palmitate and [9,10-3H]oleate for the detection and diagnosis of medium and long-chain fatty acid oxidation disorders in intact cultured fibroblasts.  Adv Exper Med Biol . 1999;  466 321-325
  • 37 Hale D E, Cornell J E, Bennett M J. Stability of long-chain and short-chain 3-hydroxyacyl-CoA dehydrogenase activity in postmortem liver.  Clin Chem . 1997;  43 273-278
  • 38 Shen J-J, Matern D, Millington D S. Acylcarnitines produced in vitro by cultured fibroblasts of patients with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency and other disorders of fatty acid oxidation.  J Inherit Metab Dis . 2000;  23 27-44
  • 39 Moon A, Rhead W J. Complementation analysis of fatty acid oxidation disorders.  J Clin Invest . 1987;  79 59-64
  • 40 Brivet M, Slama A, Ogier H. Diagnosis of carnitine acylcarnitine translocase deficiency by complementation analysis.  J Inherit Metab Dis . 1994;  17 271-274
  • 41 Chace D H, Hillman S L, Van Hove L J. Rapid diagnosis of MCAD deficiency: quantitatively analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry.  Clin Chem . 1997;  43 2106-2113
  • 42 Wood J, Seashore M R, Magera M J. Retrospective diagnosis of very long chain acyl-CoA dehydrogenase deficiency from an infant's newborn screening card.  Pediatrics . 2001;  108 e19
  • 43 Charrow J, Goodman S I, McCabe E RG. Tandem mass spectrometry in newborn screening.  Genet Med . 2000;  2 267-269
  • 44 Matern D, Rinaldo P. Medium chain acyl-coenzyme A (MCAD) deficiency. In: GeneClinics: Medical Genetics Knowledge Base [database online] University of Washington, Seattle. 2000; http://www.geneclinics.org/profiles/mcad.
  • 45 Raymond K, Bale A E, Barnes C A, Rinaldo P. Sudden adult death and medium-chain acyl-CoA dehydrogenase deficiency.  Genet Med . 1999;  1 293-294
  • 46 Iafolla A K, Thompson Jr J R, Roe C R. Medium-chain acyl-coenzyme A dehydrogenase deficiency: clinical course in 120 affected children.  J Pediatr . 1994;  124 409-415
  • 47 Rinaldo P, Yoon H R, Yu C. Sudden and unexpected neonatal death: a protocol for the postmortem diagnosis of fatty acid oxidation disorders.  Semin Perinatol . 1999;  23 204-210
  • 48 Bennett M J, Rinaldo P. The metabolic autopsy comes of age.  Clin Chem . 2001;  47 1145-1146
  • 49 Rinaldo P, Al Odaib A, Bennett M J. Complementation analysis of six patients with a defect of long-chain fatty acid transport in fibroblasts [Abstract].  J Inherit Metab Dis . 1999;  22(suppl) 15
  • 50 Vockley J, Rinaldo P, Bennett M J. Synergistic heterozygosity: disease resulting from multiple partial defects in one or more metabolic pathways.  Mol Genet Metab . 2000;  71 10-18
  • 51 Tanaka T, Nakata T, Oka T. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations.  J Lipid Res . 2001;  42 751-759
  • 52 Noyes B E, Bradshaw R A. L-3-hydroxyacyl coenzyme A dehydrogenase from pig heart muscle. Purification and properties.  J Biol Chem . 1973;  248 3052-3059
  • 53 Kobayashi A, Jiang L L, Hashimoto T. Two mitochondrial 3-hydroxyacyl-CoA dehydrogenases in bovine liver.  J Biochem . 1996;  119 775-782
  • 54 Osumi T, Hashimoto T. Occurrence of two 3-hydroxyacyl-CoA dehydrogenases in rat liver.  Biochim Biophys Acta . 1979;  574 248-267
  • 55 Vredendaal P C M J, van den Berg E T I, Malingre H EM. Human short-chain L-3-hydroxyacyl-CoA dehydrogenase: cloning and characterization of the coding sequence.  Biochem Biophys Res Commun . 1996;  223 718-723
  • 56 Tein I, De Vivo C D, Hale D E. Short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency in muscle: a new cause of recurrent myoglobinuria and encephalopathy.  Ann Neurol . 1991;  30 415-419
  • 57 Bennett M J, Weinberger M J, Kobori J A. Mitochondrial short-chain L-3-hydroxybutyryl-CoA dehydrogenase deficiency: a new defect of fatty acid oxidation.  Pediatr Res . 1996;  39 185-188
  • 58 Bennett M J, Spotswood S D, Ross K F. Fatal hepatic short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency: clinical, biochemical, and pathological studies on three subjects with this recently identified disorder of mitochondrial beta-oxidation.  Pediatr Dev Pathol . 1999;  2 337-345
  • 59 O'Brien L K, Bennett M J, Rinaldo P. A mouse model for medium and short chain L-3-hydroxyacyl-CoA dehydrogenase deficiency [Abstract].  Pediatr Res . 2001;  49 181
  • 60 Clayton P T, Eaton S, Aynsley-Green A. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion.  J Clin Invest . 2001;  108 457-465
  • 61 O'Brien L K, Rinaldo P, Sims H F. Fulminant hepatic failure associated with mutations in the medium and short chain L-3-hydroxyacyl-CoA dehydrogenase gene [Abstract].  J Inherit Metab Dis . 2000;  23(suppl) 127
  • 62 Dipple K M, McCabe E RB. Phenotypes of patients with ``simple'' Mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics.  Am J Hum Genet . 2000;  66 1729-1735
    >