Minim Invasive Neurosurg 2001; 44(3): 167-171
DOI: 10.1055/s-2001-18149
ORIGINAL PAPER
Georg Thieme Verlag Stuttgart · New York

High Cervical Spinal Cord Stimulation (CSCS) Increases Regional Cerebral Blood Flow After Induced Subarachnoid Haemorrhage in Rats

H. Ebel1 , K. Schomäcker2 , A. Balogh3 , M. Volz1 , J. Funke1 , H. Schicha2 , N. Klug1
  • 1Department of Neurosurgery, University of Cologne, Germany
  • 2Department of Nuclear Medicine, University of Cologne, Germany
  • 3Department of Neurosurgery, Debrecen University, Debrecen, Hungary
Further Information

Publication History

Publication Date:
31 October 2001 (online)

The effects of high cervical spinal cord stimulation (cSCS) on regional cerebral blood flow (rCBF) were investigated after experimentally induced subarachnoid haemorrhage (SAH) in rats by the means of 99mTc-HMPAO. The experiments were carried out on a total of 24 Wistar rats, divided in three groups [group I: control without SAH, group II: SAH, group III: SAH and cSCS]. 99mTc-HMPAO was administered intravenously (group II/group III) 48 hours after induction of SAH. In group III, 99mTc-HMPAO was given after 3 hours of cSCS. All animals were sacrificed 30 minutes after application on 99mTc-HMPAO. Radioactivities were determined in blood, cerebrum and cerebellum. The ratio cerebrum/blood and cerebellum/blood was calculated to ascertain “extraction rate” in the sample differentially. The following mean values were calculated for the cerebellum/blood ratio: Group I: 1.06, SD: 0.21; Group II: 0.66, SD: 0.21; Group III: 1.00, SD: 0.37. Comparing the mean values a highly significant difference could be found between group II and III (p = 0.007) and between group I and II (p = 0.0019), respectively. Calculations of the cerebrum/blood ratio revealed similar results. After SAH cSCS enhances cerebral and cerebellar blood flow in rats. Possibly, cSCD constitutes a new therapeutic approach in the treatment of disturbed regional cerebral blood flow after SAH.

References

  • 1 Kassell N F, Torner J C. The International Cooperative Study on timing of aneurysm surgery - an update.  Stroke. 1984;  15 566-570
  • 2 Yonas H, Wolfson jr S K, Gur D, Latchaw R E, Good W F, Leanza H, Jackson D L, Janetta P J, Reinmuth O M. Clinical experience with the use of xenon-enhanced CT blood flow mapping in cerebrovascular disease.  Stroke. 1984;  15 443-450
  • 3 Matsuda H, Tsuji S, Shuke N. Noninvasive measurements of regional cerebral blood flow using technetium-99m hexamethylpropyleneamine oxime.  Eur J Nucl Med. 1993;  20 391-401
  • 4 Powsner R A, O'Tuama L A, Jabre A, Melhem E R. SPECT imaging in cerebral vasospasm following subarachnoid hemorrhage.  J Nucl Med. 1998;  39 765-769
  • 5 Heiss W D, Herholz K, Podreka I. Comparison of 99mTc HMPAO SPECT with 18F fluoromethane PET in cerebrovascular disease.  J Cereb Blood Flow Metab. 1990;  10 687-697
  • 6 Holmes R A. The reawakening interest in radionuclide brain imaging.  J Nucl Med. 1986;  27 299-301
  • 7 Neirinck R D, Canning L R, Piper I M, Nowotnik D P, Pickett R D, Holmes R A, Volkert W A, Forster A M, Weisner P S, Mariott J A, Chaplin S B. Technetium 99m d,1-HMPAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion.  J Nucl Med. 1987;  28 191-202
  • 8 Andersen A R, Friberg H, Lassen N A, Kristensen K, Neirinck R D. Serial studies on cerebral blood flow using 99mTc HM-PAO: a comparison with 133Xe.  Nucl Med Comm. 1987;  8 549-557
  • 9 Büll U, Stirner H, Braun H, Kreiten K, Ferbert A. SPECT with 99mTc-HM PAO and 99Tc M-pertechnetate to assess regional cerebral blood flow (rCBF) and blood volume (rCBV). Preliminary results in cerebrovascular disease and interictal epilepsy.  Nucl Med Comm. 1987;  8 519-524
  • 10 Meyer F B, Morita A, Puumala M R, Nichols D A. Medical and surgical management of intracranial aneurysms.  Mayo Clin Proc. 1995;  70 153-172
  • 11 Augustinson L E, Carlsson C A, Holm J, Jivegard L. Epidural electrical stimulation in severe limb ischemia.  Ann Surg. 1985;  202 104-110
  • 12 Broseta J , Barbera J A, De Vera J A. Spinal cord stimulation in peripheral arterial disease. A cooperative study.  J Neurosurg. 1986;  64 71-80
  • 13 Sandrio S, Meglio M, Bellocci F, Montenero A S, Scabbia E, D'Annunzio V. Clinical and electrocardiographic improvement of ischemic heart disease after spinal cord stimulation.  Acta Neurochir. [Suppl.]. 1984;  33 543-546
  • 14 Hosobuchi Y. Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans.  Appl Neurophysiol. 1986;  48 372-376
  • 15 Robaina F, García-March G, Diaz Sainz F, Diaz de Durana J I, Sánchez-Ledesma M J, Broseta J. Modification of regional cerebral blood flow and metabolism detected by single photon emission computed tomography following cervical spinal cord stimulation in humans.  Stereotact Funct Neurosurg. 1989;  54/55 239-243
  • 16 Goadsby P J. Sphenopalatine ganglion stimulation increases regional cerebral blood flow independent of glucose utilization in the cat.  Brain Res. 1990;  506 145-148
  • 17 Solomon R A, Antunes J L, Chen R YZ. Decrease in cerebral blood flow in rats after experimental subarachnoid haemorrhage: a new model.  Stroke. 1985;  16 58-64
  • 18 Svendgaard N A, Brismar J, Delgado T J, Rosengren E. Subarachnoid haemorrhage in the rat: effect on the development of vasospasm of selective lesions of the catecholamine systems in the lower brain stem.  Stroke. 1985;  16 602-608
  • 19 Ram Z, Sahar A, Hadani M. Vasospasm due to massive subarachnoid haemorrhage: a rat model.  Acta Neurochir (Wien). 1991;  110 181-184
  • 20 Delgado T J, Brismar J, Svendgaard N AA. Subarachnoid haemorrhage in the rat: Angiography and fluorescence microscopy of the major cerebral arteries.  Stroke. 1985;  16 595-602
  • 21 Edvinsson L, Hara H, Uddman R. Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue: colocalization with different peptides.  J Cereb Blood Flow Metab. 1989;  9 212-218
  • 22 Liu-Chen L Y, Mayberg M R, Moskowitz M A. Immunohistochemical evidence for a substance P containing trigeminovascular pathway to pial arteries in cats.  Brain Res. 1983;  268 162-166
  • 23 Liu-Chen L Y, Gillespie S A, Norregaart T V, Moskowitz M A. Colocalization of retrogradely transported wheat germ agglutinin and the putative neurotransmitter substance P within trigeminal ganglion cells projecting to cat middle cerebral artery.  J Comp Neurol. 1984;  225 187-192
  • 24 Juul R, Aakhus S, Björnstad K, Gisvold S E, Brubakk A O, Edvinson L. Cacitonin gene-related peptide (human α-CGRP) counteracts vasoconstriction in human subarachnoid haemorrhage.  Neurosci Lett. 1994;  170 67-70
  • 25 Juul R, Hara H, Gisvold S E, Brubakk A O, Fredriksen T A, Waldemar G, Schmidt J F, Ekman R, Edvinson L. Alterations in perivascular neuropeptides (CGRP, SP, VIP) in the external jugular vein and in the cerebrospinal fluid following subarachnoid haemorrhage in man.  Acta Neurochir (Wien). 1995;  132 32-41
  • 26 Roldan P, Joanes V, Santamaria J, Barcia-Salorio J L, Casans I, Carbonell C, Tejerina E. Haemodynamic changes from spinal cord stimulation for vascular pain.  Acta Neurochir (Suppl). 1987;  39 166-169
  • 27 Hosobuchi Y. Treatment of cerebral ischemia with electrical stimulation of the cervical spinal cord.  Pace. 1991;  14 122-126
  • 28 Meglio M, Cioni B, Visocchi M. Cerebral hemodynamics during spinal cord stimulation.  Pace. 1991;  14 127-130
  • 29 Meglio M, Cioni B, Visocchi M, Nobili F, Rodriguez G, Rosadini G, Chiappini F, Sandric S. Spinal cord stimulation and cerebral haemodynamics.  Acta Neurochir (Wien). 1991;  111 43-48
  • 30 Matsui T, Hosobuchi Y. The effect of cervical spinal cord stimulation (cSCS) on experimental stroke.  Pace Pacing Clin Electrophysiol. 12;  1989 726-732
  • 31 Broseta J, García-March M J, Sánchez-Ledesma J, Gonçalves J, Silva I, Barcia J A, Llácer J L, Barcia-Salorio J L. High cervical spinal cord electrical stimulation in brain low perfusion syndromes: experimental basis and preliminary clinical report.  Stereotact Funct Neurosurg. 1994;  62 171-178
  • 32 Mazzone P, Pisani R, Pizio N, Arrigo A, Nobili F. Cerebral blood flow and somatosensory evoked response changes induced by spinal cord stimulation: preliminary follow-up observations.  Stereotact Funct Neurosurg. 1994;  62 179-185
  • 33 Visocchi M, Cioni B, Pentimalli L, Meglio M. Increase of cerebral blood flow and improvement of brain motor control following spinal cord stimulation in ischemic spastic hemiparesis.  Stereotact Funct Neurosurg. 1994;  62 103-107
  • 34 Salar G, Ori C, Iob I, Costalla G B, Battaggia C, Peserico L. Cerebral blood flow changes induced by electrical stimulation of the gasserian ganglion after eperimentally induced subarachnoid haemorrhage in pigs.  Acta Neurochir (Wien). 1992;  119 115-120
  • 35 Linderoth B, Gheradini G, Ren B, Lundeberg T. Preemptive spinal cord stimulation reduces ischemia in an animal model of vasospasm.  Neurosurgery. 1995;  37 266-272
  • 36 Naderi S, Özgüven M A, Bayhan H, Gökalp H, Erdogan A, Egemen N. Evaluation of cerebral vasospasm in patients with subarachnoid hemorrhage using single photon emission computed tomography.  Neurosurg Res. 1994;  17 261-265
  • 37 Rosen J, Butala A, Oropello J. Postoperative changes on brain SPECT imaging after aneurysmal subarachnoid hemorrhage.  Clin Nucl Med. 1994;  19 595-597
  • 38 Tranquart F, Ades P E, Groussin P, Rieant J F, Jan M, Baulieu J L. Postoperative assessment of cerebral blood flow in subarachnoid haemorrhage by means of 99mTc-HMPAO tomography.  Eur J Nucl Med. 1993;  20 53-58
  • 39 Brinker T, Seifert V, Dietz H. Cerebral blood flow and intracranial pressure during experimental subarachnoid haemorrhage.  Acta Neurochir (Wien). 1992;  115 47-52

Corresponding Author

Dr. med. H. Ebel

Neurochirurgische Klinik
Universität zu Köln

Joseph-Stelzmann-Str. 9

50924 Köln

Germany

Phone: +49-221-4784557

Fax: +49-221-4785921

Email: heinrich.ebel@t-online.de

    >