Semin Liver Dis 2001; 21(3): 351-372
DOI: 10.1055/s-2001-17556
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Matrix as a Modulator of Hepatic Fibrogenesis

Detlef Schuppan1 , Martin Ruehl2 , Rajan Somasundaram2 , Eckhart G. Hahn1
  • 1Department of Gastroenterology, Hepatology and Infectiology, University of Erlangen-Nuernberg, Erlangen, Germany
  • 2Klinikum Benjamin Franklin, Free University of Berlin, Berlin, Germany
Further Information

Publication History

Publication Date:
01 October 2001 (online)

ABSTRACT

The extracellular matrix (ECM) provides cells with positional information and a mechanical scaffold for adhesion and migration. It consists of collagens, glycoproteins, proteoglycans, glycosaminoglycans and molecules that are bound specifically by the ECM, such as certain growth factors/cytokines, matrix metalloproteinases (MMPs) and processing enzymes such as tissue transglutaminase and procollagen propeptidases. This finely tuned ecosystem is dysbalanced in chronic fibrogenesis, which can be regarded as a continuous wound-healing process and which results in scar formation. Importantly, the ECM directs cellular differentiation, migration, proliferation, and fibrogenic activation or deactivation. Partially via defined oligopeptide sequences or structural domains, the ECM transfers specific signals to cells that act in concert with growth factors/cytokines. These signals either confer stress activation, with a resultant fibrogenic response, or stress relaxation, with a fibrolytic response. Alternatively, ECM-derived peptides can modulate angiogenesis, or growth factor and MMP availability and activity. Current ECM-related antifibrotic strategies are based on the identification and in vivo application of ECM-derived biomodulatory peptides, peptide sequences, or their nonpeptidic mimetics. The latter open the opportunity of oral application and an extended biological half-life. Examples are peptides derived from collagens VI (stress activation) and XIV (stress relaxation), or collagenous consensus peptides that remove ECM-bound MMPs and growth factors. Furthermore, certain peptides can be used as targeting structures to the fibrogenic lesion.

REFERENCES

  • 1 Schuppan D, Rühl M. Matrix in signal transduction and growth factor modulation.  Braz J Med Biol Res . 1994;  27 2125-2141
  • 2 Schuppan D, Gressner A M. Function and metabolism of collagens and other extracellular matrix proteins. In: Bircher J, Benhamou J-P, McIntyre N, Rizzetto M, Rodés J, eds. Oxford Textbook of Clinical Hepatology, 2nd ed New York: Oxford University Press 1999: 381-407
  • 3 Aumailley M, Gayraud B. Structure and biological activity of the extracellular matrix.  J Mol Med . 1998;  76 253-265
  • 4 Fosang A, Hardingham T. Matrix proteoglycans. In: Comper W, ed. Extracellular Matrix Amsterdam: Harwood 1996: 200-229.
  • 5 Johnstone B, Markopoulos M, Neame P. Identification and characterization of glycanated and non-glycanated forms of biglycan and decorin in the human intervertebral disc.  Biochem J . 1993;  292 661-666
  • 6 Iozzo R V, Murdoch A D. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function.  FASEB J . 1996;  10 598-614
  • 7 Scott J E. Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen.  Biochemistry . 1996;  35 8795-8799
  • 8 Winnemoller M, Schmidt G, Kresse H. Influence of decorin on fibroblast adhesion to fibronectin.  Eur J Cell Biol . 1991;  54 10-17
  • 9 Winnemoller M, Schon P, Vischer P, Kresse H. Interactions between thrombospondin and the small proteoglycan decorin: interference with cell attachment.  Eur J Cell Biol . 1992;  59 47-55
  • 10 Pogany G, Hernandez D J, Vogel K G. The in vitro interaction of proteoglycans with type I collagen is modulated by phosphate.  Arch Biochem Biophys . 1994;  313 102-111
  • 11 Hocking D C, Smith R K, McKeown-Longo P J. A novel role for the integrin-binding III-10 module in fibronectin matrix assembly.  J Cell Biol . 1996;  133 431-444
  • 12 Chernousov M A, Fogerty F J, Koteliansky V E, Mosher D F. Role of the I-9 and III-1 modules of fibronectin in formation of an extracellular fibronectin matrix.  J Biol Chem . 1991;  266 10851-10858
  • 13 Morla A, Ruoslahti E. A fibronectin self-assembly site involved in fibronectin matrix assembly: reconstruction in a synthetic peptide.  J Cell Biol . 1992;  118 421-429
  • 14 Hynes R. Fibronectins.  New York: Springer 1990
  • 15 Brown-Augsburger P, Broekelmann T, Rosenbloom J, Mecham R P. Functional domains on elastin and microfibril-associated glycoprotein involved in elastic fibre assembly.  Biochem J . 1996;  318 149-155
  • 16 Clearly E, Gibson M. Elastic tissue, elastin and elastin associated microfibrils. In: Comper W (ed) Extracellular Matrix. Amsterdam: Harwood, 1996: 95-140
  • 17 Prockop D J, Sieron A L, Li S W. Procollagen N-proteinase and procollagen C-proteinase. Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling.  Matrix Biol . 1998;  16 399-408
  • 18 Andrikopoulos K, Liu X, Keene D R, Jaenisch R, Ramirez F. Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly.  Nat Genet . 1995;  9 31-36
  • 19 Linsenmayer T F, Gibney E, Igoe F. Type V collagen: molecular structure and fibrillar organization of the chicken alpha 1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis.  J Cell Biol . 1993;  121 1181-1189
  • 20 van der Rest M, Mayne R, Ninomiya Y, Seidah N G, Chretien M, Olsen B R. <~>The structure of type IX collagen.  J Biol Chem . 1985;  260 220-225
  • 21 Wu J J, Woods P E, Eyre D R. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding.  J Biol Chem . 1992;  267 23007-23014
  • 22 Font B, Aubert-Foucher E, Goldschmidt D, Eichenberger D, van der Rest M. Binding of collagen XIV with the dermatan sulfate side chain of decorin.  J Biol Chem . 1993;  268 25015-25018
  • 23 Ehnis T, Dieterich W, Bauer M, Kresse H, Schuppan D. Localization of a binding site for the proteoglycan decorin on collagen XIV (undulin).  J Biol Chem . 1997;  272 20414-20419
  • 24 Brown J C, Mann K, Wiedemann H, Timpl R. Structure and binding properties of collagen type XIV isolated from human placenta.  J Cell Biol . 1993;  120 557-567
  • 25 Colige A, Beschin A, Samyn B. Characterization and partial amino acid sequencing of a 107-kDa procollagen I N-proteinase purified by affinity chromatography on immobilized type XIV collagen.  J Biol Chem . 1995;  270 16724-16730
  • 26 Timpl R, Brown J C. Supramolecular assembly of basement membranes.  Bioessays . 1996;  18 123-132
  • 27 Yurchenco P, Schittny J. Molecular architecture of basement membranes.  FASEB J . 1990;  4 1577-1590
  • 28 Ricard-Blum S, Dublet B, van der Rest M. Collagen VI. Unconventional collagens types VI, VII, VIII, IX, X, XIV, XVI and XIX. New York: Oxford University Press; 2000; 4-24
  • 29 Brown J C, Timpl R. The collagen superfamily.  Int Arch Allergy Immunol . 1995;  107 484-490
  • 30 Bidanset D J, Guidry C, Rosenberg L C, Choi H U, Timpl R, Hook M. Binding of the proteoglycan decorin to collagen type VI.  J Biol Chem . 1992;  267 5250-5256
  • 31 Burg M A, Tillet E, Timpl R, Stallcup W B. Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules.  J Biol Chem . 1996;  271 26110-26116
  • 32 Kielty C M, Whittaker S P, Grant M E, Shuttleworth C A. Type VI collagen microfibrils: evidence for a structural association with hyaluronan.  J Cell Biol . 1992;  118 979-990
  • 33 Sasaki T, Gohring W, Pan T C, Chu M L, Timpl R. Binding of mouse and human fibulin-2 to extracellular matrix ligands.  J Mol Biol . 1995;  254 892-899
  • 34 Reinhardt D P, Sasaki T, Dzamba B J. Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues.  J Biol Chem . 1996;  271 19489-19496
  • 35 Burgeson R E. Type VII collagen, anchoring fibrils, and epidermolysis bullosa.  J Invest Dermatol . 1993;  101 252-255
  • 36 Rojkind M, Giambrone M A, Biempica L. Collagen types in normal and cirrhotic liver.  Gastroenterology . 1979;  76 710-719
  • 37 Schuppan D. Structure of the extracellular matrix in normal and fibrotic liver: collagens and glycoproteins.  Semin Liver Dis . 1990;  10 1-10
  • 38 Schaffner F, Popper H. Capillarization of hepatic sinusoids in man.  Gastroenterology . 1963;  44 239-242
  • 39 Hahn E, Wick G, Pencev D, Timpl R. Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin, and fibronectin.  Gut . 1980;  21 63-71
  • 40 Bissell D M, Choun M O. The role of extracellular matrix in normal liver.  Scand J Gastroenterol Suppl . 1988;  151 1-7
  • 41 Davis B H. Transforming growth factor beta responsiveness is modulated by the extracellular collagen matrix during hepatic ito cell culture.  J Cell Physiol . 1988;  136 547-553
  • 42 Neubauer K, Knittel T, Aurisch S, Fellmer P, Ramadori G. Glial fibrillary acidic protein-a cell type specific marker for Ito cells in vivo and in vitro.  J Hepatol . 1996;  24 719-30
  • 43 Ballardini G, Groff P, Badiali de Giorgi L, Schuppan D, Bianchi F B. Ito cell heterogeneity: desmin-negative Ito cells in normal rat liver.  Hepatology . 1994;  19 440-446
  • 44 Knittel T, Kobold D, Saile B. Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential.  Gastroenterology . 1999;  117 1205-1221
  • 45 Knittel T, Kobold D, Piscaglia F. Localization of liver myofibroblasts and hepatic stellate cells in normal and diseased rat livers: distinct roles of (myo-)fibroblast subpopulations in hepatic tissue repair.  Histochem Cell Biol . 1999;  112 387-401
  • 46 Knittel T, Fellmer P, Neubauer K, Kawakami M, Grundmann A, Ramadori G. The complement-activating protease P100 is expressed by hepatocytes and is induced by IL-6 in vitro and during the acute phase reaction in vivo.  Lab Invest . 1997;  77 221-230
  • 47 Andus T, Ramadori G, Heinrich P C, Knittel T, Meyer zum Buschenfelde H K. Cultured Ito cells of rat liver express the alpha 2-macroglobulin gene.  Eur J Biochem . 1987;  168 641-646
  • 48 Tiggelman A M, Boers W, Linthorst C, Brand H S, Sala M, Chamuleau R A. Interleukin-6 production by human liver (myo)fibroblasts in culture. Evidence for a regulatory role of LPS, IL-1 beta and TNF alpha.  J Hepatol . 1995;  23 295-306
  • 49 Mallat A, Preaux A M, Serradeil-Le Gal C. Growth inhibitory properties of endothelin-1 in activated human hepatic stellate cells: a cyclic adenosine monophosphate- mediated pathway. Inhibition of both extracellular signal-regulated kinase and c-Jun kinase and upregulation of endothelin B receptors.  J Clin Invest . 1996;  98 2771-2778
  • 50 Pinzani M, Milani S, De Franco R. Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells.  Gastroenterology . 1996;  110 534-548
  • 51 Irving M G, Roll F J, Huang S, Bissell D M. Characterization and culture of sinusoidal endothelium from normal rat liver: lipoprotein uptake and collagen phenotype.  Gastroenterology . 1984;  87 1233-1247
  • 52 Herbst H, Frey A, Heinrichs O. Heterogeneity of liver cells expressing procollagen types I and IV in vivo.  Histochem Cell Biol . 1997;  107 399-409
  • 53 Milani S, Herbst H, Schuppan D, Riecken E O, Stein H. Cellular localization of laminin gene transcripts in normal and fibrotic human liver.  Am J Pathol . 1989;  134 1175-1182
  • 54 Milani S, Herbst H, Schuppan D, Surrenti C, Riecken E O, Stein H. Cellular localization of type I III and IV procollagen gene transcripts in normal and fibrotic human liver.  Am J Pathol . 1990;  137 59-70
  • 55 Milani S, Herbst H, Schuppan D, Kim K Y, Riecken E O, Stein H. Procollagen expression by nonparenchymal rat liver cells in experimental biliary fibrosis.  Gastroenterology . 1990;  98 175-184
  • 56 Jia J-D, Bauer M, Sedlaczek N. Modulation of collagen XVIII/endostatin expression in lobular and biliary rat liver fibrogenesis.  J Hepatol. 2001 (in press); 
  • 57 Sudhakaran P R, Stamatoglou S C, Hughes R C. Modulation of protein synthesis and secretion by substratum in primary cultures of rat hepatocytes.  Exp Cell Res . 1986;  167 505-516
  • 58 Schuppan D, Cramer T, Bauer M, Strefeld T, Hahn E G, Herbst H. Hepatocytes as a source of collagen type XVIII endostatin.  Lancet . 1998;  352 879-880
  • 59 Jia J D, Bauer M, Sedlaczek N. Temporospatial expression of collagen XVIII/endostatin in acute and chronic liver fibrogenesis.  Hepatology . 1999;  30 1332
  • 60 Musso O, Rehn M, Saarela J. Collagen XVIII is localized in sinusoids and basement membrane zones and expressed by hepatocytes and activated stellate cells in fibrotic human liver.  Hepatology . 1998;  28 98-107
  • 61 Ingber D E, Dike L, Hansen L. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis.  Int Rev Cytol . 1994;  150 173-224
  • 62 Chiquet M, Matthisson M, Koch M, Tannheimer M, Chiquet-Ehrismann R. Regulation of extracellular matrix synthesis by mechanical stress.  Biochem Cell Biol . 1996;  74 737-744
  • 63 Chiquet M. Regulation of extracellular matrix gene expression by mechanical stress.  Matrix Biol . 1999;  18 417-426
  • 64 Carloni V, Romanelli R G, Pinzani M, Laffi G, Gentilini P. Expression and function of integrin receptors for collagen and laminin in cultured human hepatic stellate cells.  Gastroenterology . 1996;  110 1127-1136
  • 65 Pinzani M, Marra F, Carloni V. Signal transduction in hepatic stellate cells.  Liver . 1998;  18 2-13
  • 66 Racine-Samson L, Rockey D C, Bissell D M. The role of alpha1beta1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary culture.  J Biol Chem . 1997;  272 30911-30917
  • 67 Iwamoto H, Sakai H, Nawata H. Inhibition of integrin signaling with Arg-Gly-Asp motifs in rat hepatic stellate cells.  J Hepatol . 1998;  29 752-759
  • 68 Iwamoto H, Sakai H, Tada S, Nakamuta M, Nawata H. Induction of apoptosis in rat hepatic stellate cells by disruption of integrin-mediated cell adhesion.  J Lab Clin Med . 1999;  134 83-89
  • 69 Iwamoto H, Sakai H, Kotoh K, Nakamuta M, Nawata H. Soluble Arg-Gly-Asp peptides reduce collagen accumulation in cultured rat hepatic stellate cells.  Dig Dis Sci . 1999;  44 1038-1045
  • 70 Bruck R, Hershkoviz R, Lider O, Shirin H, Aeed H, Halpern Z. The use of synthetic analogues of Arg-Gly-Asp (RGD) and soluble receptor of tumor necrosis factor to prevent acute and chronic experimental liver injury.  Yale J Biol Med . 1997;  70 391-402
  • 71 Bruck R, Hershkoviz R, Lider O. Non-peptidic analogs of the cell adhesion motif RGD prevent experimental liver injury.  Isr Med Assoc J . 2000;  2(suppl) 74-80
  • 72 Eckes B, Mauch C, Huppe G, Krieg T. Downregulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms.  FEBS Lett . 1993;  318 129-133
  • 73 Gabbiani G. Some historical and philosophical reflections on the myofibroblast concept.  Curr Top Pathol . 1999;  93 1-5
  • 74 Eckes B, Zigrino P, Kessler D. Fibroblast-matrix interactions in wound healing and fibrosis.  Matrix Biol . 2000;  19 325-332
  • 75 Langholz O, Rockel D, Mauch C. Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by alpha 1 beta 1 and alpha 2 beta 1 integrins.  J Cell Biol . 1995;  131 1903-1915
  • 76 Chiquet-Ehrismann R, Tannheimer M, Koch M. Tenascin-C expression by fibroblasts is elevated in stressed collagen gels.  J Cell Biol . 1994;  127 2093-2101
  • 77 Lin Y C, Grinnell F. Decreased level of PDGF-stimulated receptor autophosphorylation by fibroblasts in mechanically relaxed collagen matrices.  J Cell Biol . 1993;  122 663-672
  • 78 Grinnell F, Ho C H, Lin Y C, Skuta G. Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices.  J Biol Chem . 1999;  274 918-923
  • 79 Lin Y C, Ho C H, Grinnell F. Decreased PDGF receptor kinase activity in fibroblasts contracting stressed collagen matrices.  Exp Cell Res . 1998;  240 377-387
  • 80 Friedman S L, Yamasaki G, Wong L. Modulation of transforming growth factor beta receptors of rat lipocytes during the hepatic wound healing response. Enhanced binding and reduced gene expression accompany cellular activation in culture and in vivo.  J Biol Chem . 1994;  269 10551-10558
  • 81 Gressner A M. Cytokines and cellular crosstalk involved in the activation of fat-storing cells.  J Hepatol . 1995;  22 28-36
  • 82 Bissell D M. Hepatic fibrosis as wound repair: a progress report.  J Gastroenterol . 1998;  33 295-302
  • 83 Eckes B, Kessler D, Aumailley M, Krieg T. Interactions of fibroblasts with the extracellular matrix: implications for the understanding of fibrosis.  Springer Semin Immunopathol . 1999;  21 415-429
  • 84 Schonherr E, Hausser H J. Extracellular matrix and cytokines: a functional unit.  Dev Immunol . 2000;  7 89-101
  • 85 Lee K S, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression.  J Clin Invest . 1995;  96 2461-2468
  • 86 Lang A, Schoonhoven R, Tuvia S, Brenner D A, Rippe R A. Nuclear factor kappaB in proliferation, activation, and apoptosis in rat hepatic stellate cells.  J Hepatol . 2000;  33 49-58
  • 87 Zachary I, Sinnett-Smith J, Rozengurt E. Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. Identification of a novel tyrosine kinase as a major substrate.  J Biol Chem . 1992;  267 19031-19034
  • 88 Rodriguez-Fernandez J L, Rozengurt E. Bombesin, vasopressin, lysophosphatidic acid, and sphingosylphosphorylcholine induce focal adhesion kinase activation in intact Swiss 3T3 cells.  J Biol Chem . 1998;  273 19321-19328
  • 89 Turner C E. Paxillin interactions.  J Cell Sci . 2000;  113(part 23) 4139-4140
  • 90 Sastry S K, Burridge K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics.  Exp Cell Res . 2000;  261 25-36
  • 91 Barberis L, Wary K K, Fiucci G. Distinct roles of the adaptor protein Shc and focal adhesion kinase in integrin signaling to ERK.  J Biol Chem . 2000;  275 36532-36540
  • 92 Rockey D C, Weisiger R A. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance.  Hepatology . 1996;  24 233-240
  • 93 Mallat A. Hepatic stellate cells and intrahepatic modulation of portal pressure.  Digestion . 1998;  59 416-419
  • 94 Reinehr R M, Kubitz R, Peters-Regehr T, Bode J G, Haussinger D. Activation of rat hepatic stellate cells in culture is associated with increased sensitivity to endothelin 1.  Hepatology . 1998;  28 1566-1577
  • 95 Mallat A, Fouassier L, Preaux A M, Mavier P, Lotersztajn S. Antiproliferative effects of ET-1 in human liver Ito cells: an ETB- and a cyclic AMP-mediated pathway.  J Cardiovasc Pharmacol . 1995;  26(Suppl 3) 132-134
  • 96 Gallois C, Habib A, Tao J. Role of NF-kappaB in the antiproliferative effect of endothelin-1 and tumor necrosis factor-alpha in human hepatic stellate cells. Involvement of cyclooxygenase-2.  J Biol Chem . 1998;  273 23183-190
  • 97 Cho J J, Hocher B, Herbst H. An oral endothelin-a receptor antagonist blocks collagen synthesis and deposition in advanced rat liver fibrosis.  Gastroenterology . 2000;  118 1169-1178
  • 98 Song S Y, Nomizu M, Yamada Y, Kleinman H K. Liver metastasis formation by laminin-1 peptide (LQVQLSIR)-adhesion selected B16-F10 melanoma cells.  Int J Cancer . 1997;  71 436-441
  • 99 Kim W H, Nomizu M, Song S Y. Laminin-alpha1-chain sequence Leu-Gln-Val-Gln-Leu-Ser-Ile-Arg (LQVQLSIR) enhances murine melanoma cell metastases.  Int J Cancer . 1998;  77 632-639
  • 100 Yoshida Y, Hosokawa K, Dantes A, Kotsuji F, Kleinman H K, Amsterdam A. Role of laminin in ovarian cancer tumor growth and metastasis via regulation of Mdm2 and Bcl-2 expression.  Int J Oncol . 2001;  18 913-921
  • 101 Kim W H, Lee B L, Jun S H, Song S Y, Kleinman H K. Expression of 32/67-kDa laminin receptor in laminin adhesion-selected human colon cancer cell lines.  Br J Cancer . 1998;  77 15-20
  • 102 Hoffman M P, Engbring J A, Nielsen P K. Cell type-specific differences in glycosaminoglycans modulate the biological activity of a heparin-binding peptide (RKRLQVQLSIRT) from the G domain of the laminin α1 chain.  J Biol Chem . 2001;  13 13
  • 103 Pasco S, Han J, Gillery P. A specific sequence of the noncollagenous domain of the alpha3(IV) chain of type IV collagen inhibits expression and activation of matrix metalloproteinases by tumor cells.  Cancer Res . 2000;  60 467-473
  • 104 Maeshima Y, Colorado P C, Torre A. Distinct antitumor properties of a type IV collagen domain derived from basement membrane.  J Biol Chem . 2000;  275 21340-21348
  • 105 Colorado P C, Torre A, Kamphaus G. Anti-angiogenic cues from vascular basement membrane collagen.  Cancer Res . 2000;  60 2520-2526
  • 106 Hu B, Kapila Y L, Buddhikot M, Shiga M, Kapila S. Coordinate induction of collagenase-1, stromelysin-1 and urokinase plasminogen activator (uPA) by the 120-kDa cell-binding fibronectin fragment in fibrocartilaginous cells: uPA contributes to activation of procollagenase-1.  Matrix Biol . 2000;  19 657-669
  • 107 Yi M, Ruoslahti E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis.  Proc Natl Acad Sci USA . 2001;  98 620-624
  • 108 Jarnagin W R, Rockey D C, Koteliansky V E, Wang S S, Bissell D M. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis.  J Cell Biol . 1994;  127 2037-2048
  • 109 Peters J H, Hynes R O. Fibronectin isoform distribution in the mouse. I. The alternatively spliced EIIIB, EIIIA, and V segments show widespread codistribution in the developing mouse embryo.  Cell Adhes Commun . 1996;  4 103-125
  • 110 Xu G, Niki T, Virtanen I, Rogiers V, De Bleser P, Geerts A. Gene expression and synthesis of fibronectin isoforms in rat hepatic stellate cells. Comparison with liver parenchymal cells and skin fibroblasts.  J Pathol . 1997;  183 90-98
  • 111 George J, Wang S S, Sevcsik A M. Transforming growth factor-beta initiates wound repair in rat liver through induction of the EIIIA-fibronectin splice isoform.  Am J Pathol . 2000;  156 115-124
  • 112 Atkinson J C, Ruhl M, Becker J, Ackermann R, Schuppan D. Collagen VI regulates normal and transformed mesenchymal cell proliferation in vitro.  Exp Cell Res . 1996;  228 283-291
  • 113 Ruehl M, Wiecher D, Sahin E, Somasundaram R, Riecken E O, Schuppan D. Soluble collagen VI as an auto paracrine inhibitor of apoptosis in hepatic stellate cells.  Gastroenterology . 1999;  116 10392
  • 114 Ruhl M, Sahin E, Johannsen M. Soluble collagen VI drives serum-starved fibroblasts through S phase and prevents apoptosis via down-regulation of Bax.  J Biol Chem . 1999;  274 34361-34368
  • 115 Tillet E, Ruggiero F, Nishiyama A, Stallcup W B. The membrane-spanning proteoglycan NG2 binds to collagens V and VI through the central nonglobular domain of its core protein.  J Biol Chem . 1997;  272 10769-10776
  • 116 Ruhl M, Johannsen M, Atkinson J. Soluble collagen VI induces tyrosine phosphorylation of paxillin and focal adhesion kinase and activates the MAP kinase erk2 in fibroblasts.  Exp Cell Res . 1999;  250 548-557
  • 117 Ehnis T, Dieterich W, Bauer M, Lampe B, Schuppan D. A chondroitin/dermatan sulfate form of CD44 is a receptor for collagen XIV (undulin).  Exp Cell Res . 1996;  229 388-397
  • 118 Ehnis T, Dieterich W, Bauer M, Schuppan D. Localization of a cell adhesion site on collagen XIV (undulin).  Exp Cell Res . 1998;  239 477-480
  • 119 Klein G, Kibler C, Schermutzki F, Brown J, Muller C A, Timpl R. Cell binding properties of collagen type XIV for human hematopoietic cells.  Matrix Biol . 1998;  16 307-317
  • 120 Walzog B, Schuppan D, Heimpel C, Hafezi-Moghadam A, Gaehtgens P, Ley K. The leukocyte integrin Mac-1 (CD11b/CD18) contributes to binding of human granulocytes to collagen.  Exp Cell Res . 1995;  218 28-38
  • 121 Schuppan D, Cantaluppi M C, Becker J. Undulin, an extracellular matrix glycoprotein associated with collagen fibrils.  J Biol Chem . 1990;  265 8823-8832
  • 122 Walchli C, Koch M, Chiquet M, Odermatt B F, Trueb B. Tissue-specific expression of the fibril-associated collagens XII and XIV.  J Cell Sci . 1994;  107 669-681
  • 123 Knittel T, Armbrust T, Schwogler S, Schuppan D, Ramadori G. Distribution and cellular origin of undulin in rat liver.  Lab Invest . 1992;  67 779-787
  • 124 Knittel T, Odenthal M, Schuppan D. Synthesis of undulin by rat liver fat-storing cells: comparison with fibronectin and tenascin.  Exp Cell Res . 1992;  203 312-320
  • 125 Ricard-Blum S, Dublet B, van der Rest M. Collagen XIV. Unconventional Collagens Types VI, VII, VIII, IX, X, XIV, XVI and XIX. New York: Oxford University Press; 2000; 93-99
  • 126 Berthod F, Germain L, Guignard R. Differential expression of collagens XII and XIV in human skin and in reconstructed skin.  J Invest Dermatol . 1997;  108 737-742
  • 127 Akutsu N, Milbury C M, Burgeson R E, Nishiyama T. Effect of type XII or XIV collagen NC-3 domain on the human dermal fibroblast migration into reconstituted collagen gel.  Exp Dermatol . 1999;  8 17-21
  • 128 Nishiyama T, McDonough A M, Bruns R R, Burgeson R E. Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability.  J Biol Chem . 1994;  269 28193-28199
  • 129 Ruehl M, Wagner C, Ackermann R. Collagen XIV (Undulin) induces quiescence and differentiation in fibroblasts and hepatic stellate cells.  Gastroenterology . 2000;  116 118(Abst)
  • 130 Ruehl M, Wagner C, Somasundaram R. Collagen XIV induces quiescence and differentiation but not apoptosis in fibroblasts and hepatic stellate cells.  Naunyn Schmiedebergs Arch Pharmacol . 2000;  362 R18(Abst)
  • 131 O'Reilly M S, Boehm T, Shing Y. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.  Cell . 1997;  88 277-285
  • 132 Boehm T, Folkman J, Browder T, O'Reilly M S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance.  Nature . 1997;  390 404-407
  • 133 Wen W, Moses M A, Wiederschain D, Arbiser J L, Folkman J. The generation of endostatin is mediated by elastase.  Cancer Res . 1999;  59 6052-6056
  • 134 Felbor U, Dreier L, Bryant R A, Ploegh H L, Olsen B R, Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII.  EMBO J . 2000;  19 1187-1194
  • 135 Karumanchi S A, Jha V, Ramchandran R. Cell surface glypicans are low-affinity endostatin receptors.  Mol Cell . 2001;  7 811-822
  • 136 Rehn M, Pihlajaniemi T. Alpha 1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen.  Proc Natl Acad Sci USA . 1994;  91 4234-4238
  • 137 Muragaki Y, Timmons S, Griffith C M. Mouse Col18a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones.  Proc Natl Acad Sci USA . 1995;  92 8763-8767
  • 138 Musso O, Theret N, Heljasvaara R. Tumor hepatocytes and basement membrane-producing cells specifically express two different forms of the endostatin precursor, collagen XVIII, in human liver cancers.  Hepatology . 2001;  33 868-876
  • 139 Sasaki T, Larsson H, Kreuger J. Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin.  EMBO J . 1999;  18 6240-6248
  • 140 Fairbrother W J, Champe M A, Christinger H W, Keyt B A, Starovasnik M A. Solution structure of the heparin-binding domain of vascular endothelial growth factor.  Structure . 1998;  6 637-648
  • 141 Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors.  FASEB J . 1999;  13 9-22
  • 142 Shichiri M, Hirata Y. Antiangiogenesis signals by endostatin.  FASEB J . 2001;  15 1044-1053
  • 143 Ramchandran R, Dhanabal M, Volk R. Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin.  Biochem Biophys Res Commun . 1999;  255 735-739
  • 144 Frizell E, Liu S L, Abraham A. Expression of SPARC in normal and fibrotic livers.  Hepatology . 1995;  21 847-854
  • 145 Blazejewski S, Le Bail B, Boussarie L. Osteonectin (SPARC) expression in human liver and in cultured human liver myofibroblasts.  Am J Pathol . 1997;  151 651-657
  • 146 Murphy-Ullrich J E, Lane T F, Pallero M A, Sage E H. SPARC mediates focal adhesion disassembly in endothelial cells through a follistatin-like region and the Ca(2+)-binding EF-hand.  J Cell Biochem . 1995;  57 341-350
  • 147 Yan Q, Sage E H. SPARC, a matricellular glycoprotein with important biological functions.  J Histochem Cytochem . 1999;  47 1495-1506
  • 148 Murphy-Ullrich J E. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state?.  J Clin Invest . 2001;  107 785-790
  • 149 Bradshaw A D, Sage E H. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury.  J Clin Invest . 2001;  107 1049-1054
  • 150 Lane T F, Iruela-Arispe M L, Johnson R S, Sage E H. SPARC is a source of copper-binding peptides that stimulate angiogenesis.  J Cell Biol . 1994;  125 929-943
  • 151 Funk S E, Sage E H. Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial cells and fibroblasts.  J Cell Physiol . 1993;  154 53-63
  • 152 Francki A, Bradshaw A D, Bassuk J A, Howe C C, Couser W G, Sage E H. SPARC regulates the expression of collagen type I and transforming growth factor-beta1 in mesangial cells.  J Biol Chem . 1999;  274 32145-32152
  • 153 Wrana J L, Overall C M, Sodek J. Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor beta. Comparison of transcriptional and post-transcriptional control with fibronectin and type I collagen.  Eur J Biochem . 1991;  197 519-528
  • 154 Nicosia R F, Tuszynski G P. Matrix-bound thrombospondin promotes angiogenesis in vitro.  J Cell Biol . 1994;  124 183-193
  • 155 Murphy-Ullrich J E, Poczatek M. Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology.  Cytokine Growth Factor Rev . 2000;  11 59-69
  • 156 Grainger D J, Frow E K. Thrombospondin 1 does not activate transforming growth factor beta1 in a chemically defined system or in smooth-muscle-cell cultures.  Biochem J . 2000;  350(part 1) 291-298
  • 157 Abdelouahed M, Ludlow A, Brunner G, Lawler J. Activation of platelet-transforming growth factor beta-1 in the absence of thrombospondin-1.  J Biol Chem . 2000;  275 17933-17936
  • 158 El-Youssef M, Mu Y, Huang L. Increased expression of transforming growth factor-beta1 and thrombospondin-1 in congenital hepatic fibrosis: possible role of the hepatic stellate cell.  J Pediatr Gastroenterol Nutr . 1999;  28 386-392
  • 159 Taipale J, Keski-Oja J. Growth factors in the extracellular matrix.  FASEB J . 1997;  11 51-59
  • 160 Vaday G G, Lider O. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation.  J Leukoc Biol . 2000;  67 149-159
  • 161 Davis G E, Bayless K J, Davis M J, Meininger G A. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules.  Am J Pathol . 2000;  156 1489-1498
  • 162 Hildebrand A, Romaris M, Rasmussen L M. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta.  Biochem J . 1994;  302 527-534
  • 163 Mizuno K, Inoue H, Hagiya M. Hairpin loop and second kringle domain are essential sites for heparin binding and biological activity of hepatocyte growth factor.  J Biol Chem . 1994;  269 1131-1136
  • 164 Berman B, Ostrovsky O, Shlissel M. Similarities and differences between the effects of heparin and glypican-1 on the bioactivity of acidic fibroblast growth factor and the keratinocyte growth factor.  J Biol Chem . 1999;  274 36132-36138
  • 165 Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I. A heparin-binding angiogenic protein-basic fibroblast growth factor-is stored within basement membrane.  Am J Pathol . 1988;  130 393-400
  • 166 Vlodavsky I, Fuks Z, Ishai-Michaeli R. Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis.  J Cell Biochem . 1991;  45 167-176
  • 167 Modrowski D, Lomri A, Marie P J. Glycosaminoglycans bind granulocyte-macrophage colony-stimulating factor and modulate its mitogenic activity and signaling in human osteoblastic cells.  J Cell Physiol . 1998;  177 187-195
  • 168 Modrowski D, Basle M, Lomri A, Marie P J. Syndecan-2 is involved in the mitogenic activity and signaling of granulocyte-macrophage colony-stimulating factor in osteoblasts.  J Biol Chem . 2000;  275 9178-9185
  • 169 Mbemba E, Slimani H, Atemezem A, Saffar L, Gattegno L. Glycans are involved in RANTES binding to CCR5 positive as well as to CCR5 negative cells.  Biochim Biophys Acta . 2001;  1510 354-366
  • 170 Lortat-Jacob H, Kleinman H K, Grimaud J A. High-affinity binding of interferon-gamma to a basement membrane complex (matrigel).  J Clin Invest . 1991;  87 878-883
  • 171 Sadir R, Forest E, Lortat-Jacob H. The heparan sulfate binding sequence of interferon-gamma increased the on rate of the interferon-gamma-interferon-gamma receptor complex formation.  J Biol Chem . 1998;  273 10919-10925
  • 172 Fernandez-Botran R, Yan J, Justus D E. Binding of interferon gamma by glycosaminoglycans: a strategy for localization and/or inhibition of its activity.  Cytokine . 1999;  11 313-325
  • 173 Alvarez-Silva M, Borojevic R. GM-CSF and IL-3 activities in schistosomal liver granulomas are controlled by stroma-associated heparan sulfate proteoglycans.  J Leukoc Biol . 1996;  59 435-441
  • 174 Andersson M, Ostman A, Westermark B, Heldin C H. Characterization of the retention motif in the C-terminal part of the long splice form of platelet-derived growth factor A-chain.  J Biol Chem . 1994;  269 926-930
  • 175 Raines E W, Lane T F, Iruela-Arispe M L, Ross R, Sage E H. The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors.  Proc Natl Acad Sci U S A . 1992;  89 1281-1285
  • 176 Pichler R H, Bassuk J A, Hugo C. SPARC is expressed by mesangial cells in experimental mesangial proliferative nephritis and inhibits platelet-derived-growth-factor-medicated mesangial cell proliferation in vitro.  Am J Pathol . 1996;  148 1153-1167
  • 177 Kupprion C, Motamed K, Sage E H. SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells.  J Biol Chem . 1998;  273 29635-29640
  • 178 Hasselaar P, Sage E H. SPARC antagonizes the effect of basic fibroblast growth factor on the migration of bovine aortic endothelial cells.  J Cell Biochem . 1992;  49 272-283
  • 179 Alon R, Cahalon L, Hershkoviz R. TNF-alpha binds to the N-terminal domain of fibronectin and augments the beta 1-integrin-mediated adhesion of CD4+ T lymphocytes to the glycoprotein.  J Immunol . 1994;  152 1304-1313
  • 180 Hershkoviz R, Alon R, Mekori Y A. Heat-stressed CD4+ T lymphocytes: differential modulations of adhesiveness to extracellular matrix glycoproteins, proliferative responses and tumour necrosis factor-alpha secretion.  Immunology . 1993;  79 241-247
  • 181 Vaday G G, Hershkoviz R, Rahat M A, Lahat N, Cahalon L, Lider O. Fibronectin-bound TNF-alpha stimulates monocyte matrix metalloproteinase-9 expression and regulates chemotaxis.  J Leukoc Biol . 2000;  68 737-747
  • 182 Somasundaram R, Schuppan D. Type I, II, III, IV, V, and VI collagens serve as extracellular ligands for the isoforms of platelet-derived growth factor (AA, BB, and AB).  J Biol Chem . 1996;  271 26884-26891
  • 183 Somasundaram R, Ruehl M, Tiling N. Collagens serve as an extracellular store of bioactive interleukin 2.  J Biol Chem . 2000;  275 38170-38175
  • 184 Schuppan D, Schmid M, Somasundaram R. Collagens in the liver extracellular matrix bind hepatocyte growth factor.  Gastroenterology . 1998;  114 139-152
  • 185 Ruehl M, Schoenfelder I, Farndale R. Keratinocyte growth factor binds to collagens of the gastrointestinal tract: identification of the collagen binding structure.  Gastroenterology . 2001;  120(Suppl 1) A694
  • 186 Schaefer B M, Somasundaram R, Schmid M, Ruehl M, Riecken E O, Schuppan D. Oncostatin M binds to liver collagens type I, III and VI.  Hepatology . 1998;  28 A1393
  • 187 Ruehl M, Somasundaram R, Schoenfelder I. Preferential binding of connective tissue growth factor to liver collagens type I, III and VI.  Hepatology . 1999;  30 A1331
  • 188 Pinzani M, Gesualdo L, Sabbah G M, Abboud H E. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells.  J Clin Invest . 1989;  84 1786-1793
  • 189 Ruehl M, Somasundaram R, Farndale R. Synthetic collagen-oligopeptides inhibit binding of platelet derived growth factor BB to the hepatic extracellular matrix.  J Hepatol . 2001;  34 A51
  • 190 Arthur M J. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis.  Am J Physiol Gastrointest Liver Physiol . 2000;  279 G245-249
  • 191 Toth M, Sado Y, Ninomiya Y, Fridman R. Biosynthesis of alpha2(IV) and alpha1(IV) chains of collagen IV and interactions with matrix metalloproteinase-9.  J Cell Physiol . 1999;  180 131-139
  • 192 Allan J A, Docherty A J, Barker P J, Huskisson N S, Reynolds J J, Murphy G. Binding of gelatinases A and B to type-I collagen and other matrix components.  Biochem J . 1995;  309 299-306
  • 193 Steffensen B, Wallon U M, Overall C M. Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen.  J Biol Chem . 1995;  270 11555-11566
  • 194 Steffensen B, Bigg H F, Overall C M. The involvement of the fibronectin type II-like modules of human gelatinase A in cell surface localization and activation.  J Biol Chem . 1998;  273 20622-20628
  • 195 Wallon U M, Overall C M. The hemopexin-like domain (C domain) of human gelatinase A (matrix metalloproteinase-2) requires Ca2+ for fibronectin and heparin binding.  Binding properties of recombinant gelatinase A C domain to extracellular matrix and basement membrane components. J Biol Chem . 1997;  272 7473-7481
  • 196 Olson M W, Gervasi D C, Mobashery S, Fridman R. Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2.  J Biol Chem . 1997;  272 29975-29983
  • 197 Olson M W, Toth M, Gervasi D C, Sado Y, Ninomiya Y, Fridman R. High affinity binding of latent matrix metalloproteinase-9 to the alpha2(IV) chain of collagen IV.  J Biol Chem . 1998;  273 10672-10681
  • 198 Somasundaram R, Ruehl M, Oesterling C, Schmid M, Riecken E O, Schuppan D. Retention of gelatinases (MMP-2 and-9) by collagens I, III, IV, and of interstitial collagenases (MMP-1 and-8) by collagen VI in the hepatic extracellular matrix.  Gastroenterology . 1999;  118 A1279
  • 199 Somasundaram R, Ruehl M, Ackermann R, Schmid M, Riecken E O, Schuppan D. Matrix metalloproteinases -1, -3 & -8 are exclusively bound by the alpha2-chain of collagen VI in the liver extracellular matrix.  J Hepatol . 2000;  32(suppl 2) A64
  • 200 Beljaars L, Molema G, Schuppan D. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor.  J Biol Chem . 2000;  275 12743-12751
    >