Planta Med 2000; 66(7): 596-600
DOI: 10.1055/s-2000-8621
Original Paper
Georg Thieme Verlag Stuttgart · New York

Effects of Prenylated Flavonoids and Biflavonoids on Lipopolysaccharide-Induced Nitric Oxide Production from the Mouse Macrophage Cell Line RAW 264.7

Bong Sun Cheon1 , Young Ha Kim1 , Kun So Son2 , Hyeun Wook Chang3 , Sam Sik Kang4 , Hyun Pyo Kim1,*
  • 1 College of Pharmacy, Kangwon National University, Chunchon, Korea
  • 2 Department of Food and Nutrition, Andong National University, Andong, Korea
  • 3 College of Pharmacy, Yeongnam University, Gyongsan, Korea
  • 4 Natural Products Research Institute, Seoul National University, Seoul, Korea
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Abstract

Certain flavonoid derivatives possess anti-inflammatory activity in vitro and in vivo. Besides their antioxidative properties and effects on the arachidonic acid metabolism including cyclooxygenase/lipoxygenase inhibition, some flavones and flavonols were previously found to show inhibitory activity on nitric oxide production by inducible nitric oxide synthase (iNOS; NOS type 2) through suppression of iNOS induction. As part of our continuing investigations, the effects of unique and minor flavonoids (prenylated flavonoids and biflavonoids) on nitric oxide production from lipopolysaccharide-induced macrophage cell line (RAW 264.7) were evaluated in order to establish their inhibitory activity on NO production and correlate this action with their in vivo anti-inflammatory potential. Among the derivatives tested, prenylated compounds including morusin, kuwanon C, and sanggenon D and biflavonoids such as bilobetin and ginkgetin were found to inhibit NO production from lipopolysaccharide (LPS)-induced RAW 264.7 cells at > 10 μM. Inhibition of nitric oxide production was mediated by suppression of iNOS enzyme induction but not by direct inhibition of iNOS enzyme activity. An exception was echinoisoflavanone that inhibited iNOS enzyme activity (IC50 = 83 μM) and suppressed iNOS enzyme induction as well. While most prenylated derivatives showed cytotoxicity to RAW cells at 10 - 100 μM, all biflavonoids tested were not cytotoxic. Since nitric oxide (NO) produced by inducible NO synthase (iNOS) plays an important role in inflammatory disorders, inhibition of NO production by these flavonoids may contribute, at least in part, to their anti-inflammatory and immunoregulating potential in vivo.

References

  • 1 Havsteen  P.. Flavonoids, a class of natural products of high pharmacological potency.  Biochem. Pharmacol.. 1983;;  32 1141-8
  • 2 Middleton  E,, Kandaswami  C.. The impact of plant flavonoids on mammalian biology: Implications for immunity, inflammation and cancer. Harborne JB, editor The flavonoids: Advances in research since 1986,. London:; Chapman & Hall, 1994: 619-52
  • 3 Moncada  S,, Palmer  R MJ,, Higgs  E A.. Nitric oxide: Physiology, pathophysiology, and pharmacology.  Pharmacol. Rev.. 1991;;  43 109-42
  • 4 Strichtenoch  D O,, Frolich  J C.. Nitric oxide and inflammatory joint diseases.  Br. J. Rheumatol.. 1998;;  37 246-57
  • 5 Kim  H K,, Cheon  B S,, Kim  Y H,, Kim  S Y,, Kim  H P.. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships.  Biochem. Pharmacol.. 1999;;  58 759-65
  • 6 Reddy  G R,, Ueda  N,, Hada  T,, Sackeyfio  A C,, Yamamoto  S,, Hano  Y et al.. A prenylflavone, artonin E, as arachidonate 5-lipoxygenase inhibitor.  Biochem. Pharmacol.. 1991;;  41 115-8
  • 7 Kim  H K,, Son  K H,, Chang  H W,, Kang  S S,, Kim  H P.. Amentoflavone, a plant biflavone: New potential anti-inflammatory agent.  Arch. Pharmacal Res.. 1998;;  21 406-10
  • 8 Kim  H K,, Son  K H,, Chang  H W,, Kang  S S,, Kim  H P.. Inhibition of rat adjuvant-induced arthritis by ginkgetin, a biflavone from Ginkgo biloba leaves.  Planta Medica. 1999;;  65 465-7
  • 9 Nomura  T,, Fukai  T,, Yamada  S,, Katayanagi  M.. Studies on the constituents of the cultivated mulberry tree. I. Three new prenylflavones from the root bark of Morus alba L.  Chem. Pharm. Bull.. 1978;;  26 1394-1402
  • 10 Nomura  T,, Fukai  T.. Kuwanon G, a new flavone derivative from the root barks of the cultivated mulberry tree (Morus alba L.).  Chem. Pharm. Bull.. 1980;;  28 2548-52
  • 11 Hano  Y,, Itoh  M,, Fukai  T,, Nomura  T,, Urano  S.. Revised structure of sanggenon B.  Heterocycles. 1985;;  23 1691-6
  • 12 Nomura  T,, Fukai  T,, Hano  Y,, Uzawa  J.. Structure of sanggenon D, a natural hypotensive Diels-Alder adduct from Chinese crude drug “Sang-Bai-Pi” (Morus root barks).  Heterocycles. 1982;;  17 381-9
  • 13 Ikuta  J,, Hano  Y,, Nomura  T.. Constituents of the cultivated mulberry tree XXXIII. Components of Broussonetia papyrifera (L.) Vent. III. Structures of two new isoprenylated flavans, kazinols A and B.  Heterocycles. 1985;;  23 2835-42
  • 14 Kim  C M,, Ebizuka  Y,, Sankawa  U.. Two new isoflavonoids from Echinosophora koreensis Nakai and the structure revision of sophoronol.  Chem. Pharm. Bull.. 1989;;  37 2879-81
  • 15 Kang  S S,, Kim  J S,, Kawk  W J,, Kim  K H.. Flavonoids from the leaves of Ginkgo biloba.  Kor. J. Pharmacogn.. 1990;;  21 111-20
  • 16 Shin  D I,, Kim  J.. Flavonoid constituents of Selaginella tamariscina. .  Kor. J. Pharmacogn.. 1991;;  22 207-10
  • 17 Son  K H,, Park  J O,, Chung  K C,, Chang  H W,, Kim  H P,, Kim  J S et al.. Flavonoids from the aerial parts of Lonicera japonica.  Arch. Pharmacal Res.. 1992;;  15 365-70
  • 18 Chang  S K,, Youm  J R,, Kang  S S.. Seasonal variations of biflavone content from Ginkgo biloba leaves.  Kor. J. Pharmacogn.. 1993;;  24 54-7
  • 19 Kobuchi  H,, Droy-Lefaix  M T,, Christen  Y,, Packer  L.. Ginkgo biloba extract (Egb 761): Inhibitory effect on nitric oxide production in the macrophage cell line RAW 264.7.  Biochem. Pharmacol.. 1997;;  53 897-903
  • 20 Chan  M M,, Fong  D,, Ho  C T,, Huang  H T.. Inhibition of inducible nitric oxide synthase gene expression and enzyme activity by epigallocatechin gallate, a natural product from green tea.  Biochem. Pharmacol.. 1997;;  54 1281-6
  • 21 Soliman  K F,, Mazzio  E A.. In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds.  Proc. Soc. Exp. Biol. Med.. 1998;;  218 390-7
  • 22 Sadowska-krowicka  H,, Mannick  E E,, Oliver  P D,, Sandoval  M,, Zhang  X J,, Eloby-Chiless  S et al.. Genistein and gut inflammation: Role of nitric oxide.  Proc. Soc. Exp. Biol. Med.. 1998;;  217 351-7
  • 23 Wakabayashi  I.. Inhibitory effects of baicalein and wogonin on lipopolysaccharide-induced nitric oxide production in macrophages.  Pharmacol. Toxicol.. 1999;;  84 288-91
  • 24 Wadsworth  T L,, Koop  D R.. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages.  Biochem. Pharmacol.. 1999;;  57 941-9
  • 25 Lee  S J,, Choi  J H,, Son  K H,, Chang  H W,, Kang  S S,, Kim  H P.. Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids.  Life Sci.. 1995;;  57 551-8
  • 26 Lin  Y L,, Lin  J-K.. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthesis by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-κB.  Mol. Pharmacol.. 1997;;  52 464-72
  • 27 Rohnert  U,, Schneider  W,, Elstner  E F.. Superoxide-dependent and -independent nitrite formation from hydroxylamine: Inhibition by plant extracts.  Z. Naturforsch.. 1998;;  53c 241-9

Prof. Dr. H. P. Kim

College of Pharmacy Kangwon National University

Chunchon 200-701

Republic of Korea

Email: hpkim@cc.kangwon.ac.kr

Phone: +82-361-255-9271

    >