Semin Reprod Med 2000; 18(3): 237-254
DOI: 10.1055/s-2000-12562
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Molecular Interactions at the Maternal-Embryonic Interface During the Early Phase of Implantation

Susan J. Kimber
  • School of Biological Sciences, University of Manchester, Manchester, United Kingdom
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

In mammals the embryo must implant in the uterus and develop a placenta to gain nutrition and facilitate gas exchange. In this article, the earliest events in this process are reviewed. The embryo can implant only when it has reached the blastocyst stage. The blastocyst is composed of an inner clump of cells, the inner cell mass, that gives rise to the fetus and an outer layer of trophectoderm (TE), the precursor of the placenta. Both blastocyst and uterus must differentiate in parallel to reach the appropriate state of maturity (activated blastocyst and receptive uterus) at which implantation can occur. Interaction between TE and the luminal epithelium (LE) lining the uterus initiates implantation, and both soluble signals and association between molecules on apposed surfaces appear to be involved. A number of cell surface molecules have been implicated in the initial attachment between TE and LE. These include HSPG, Le-y and the H-type-1 antigen, HB-EGF, trophinin-tastin-bystin complex, integrins, and extracellular matrix molecules such as osteopontin and laminin. Others, such as mucins, may need to be removed or modified to allow adhesion to proceed. Evidence for the role of these components is discussed.

REFERENCES

  • 1 Cross J C. Genetic insights into trophoblast differentiation and placental morphogenesis.  Semin Cell Dev Biol . 2000;  11 105-113
  • 2 Lindenberg S, Hyttel P, Sjogren A, Greve T A. Comparative study of attachment of human, bovine and mouse blastocysts to uterine epithelial monolayers.  Hum Reprod . 1989;  4 446-456
  • 3 Bentin-Ley U, Sjögren A, Nilsson L, Hamberger L, Larsen J F, Horn T. Presence of uterine pinopodes at the embryo-endometrial interface during human implantation in vitro.  Hum Reprod . 1999;  14 515-520
  • 4 Campbell S, Swann H R, Aplin J D, Seif M W, Kimber S J, Elstein M. CD44 is expressed throughout pre-implantation human embryo development.  Hum Reprod . 1995;  10 425-430
  • 5 Campbell S, Swann H R, Seif M W, Kimber S J, Aplin J D. Cell adhesion molecules on the oocyte and preimplantation human embryo.  Hum Reprod . 1995;  10 1571-1578
  • 6 Chia M C, Winston R ML, Handyside A H. EGF, TGF-α and EGFE expression in human preimplantation embryos.  Development . 1995;  121 299-307
  • 7 Sharkey A M, Dellow K, Blayney M, Macnamee M, Charnock-Jones S, Smith S K. Stage-specific expression of cytokine and receptor messenger ribonucleic acids in human preimplantation embryos.  Biol Reprod . 1995;  53 955-962
  • 8 Poirier F, Kimber S J. Cell surface carbohydrates and lectins in early development.  Mol Hum Reprod . 1997;  3 907-918
  • 9 Jurisicova A, Antenos M, Kapasi K, Meriano J, Casper R F. Variability in the expression of trophectodermal markers β-human chorionic gonadotrophin, human leukocyte antigen-G and pregnancy specific β-1 glycoprotein by the human blastocyst.  Hum Reprod . 1999;  14 1852-1858
  • 10 He Z-Y, Liu H-C, Mele C A. Expression of inhibin/activin subunits and their receptors and binding proteins in human preimplantation embryos.  J Assist Reprod Genet . 1999;  16 73-80
  • 11 Denker H W. Implantation: a cell biological paradox .  J Exp Zool . 1993;  266 541-558
  • 12 Paria B C, Lim H, Das S K, Reese J, Dey S K. Molecular signalling in uterine receptivity for implantation.  Semin Cell Dev Biol . 2000;  11 67-76
  • 13 Psychoyos A. Endocrine control of egg implantation. In: Greep RO, Astwood EG, Geiger SR, eds. Handbook of Physiology Washington, DC: American Physiological Society 1973: 187-215
  • 14 McLaren A, Mitchie D. Studies on the transfer of fertilised mouse eggs to uterine foster-mothers.  J Exp Biol . 1956;  33 394-416
  • 15 Dickmann Z, Noyes R W. The fate of ova transferred into the uterus of the rat.  J Reprod Fertil . 1960;  1 197-212
  • 16 Cowell T P. Implantation and the development of mouse eggs transferred to the uteri of non-progestational mice.  J Reprod Fertil . 1969;  19 239-245
  • 17 Navot D, Bergh P A, Williams M. An insight into early reproductive processes through the in vivo model of ovum donation.  J Clin Endocrinol Metab . 1991;  72 408-414
  • 18 Bergh P A, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation.  Fertil Steril . 1992;  58 537-542
  • 19 De Ziegler D. Hormonal strategies for preparing the human endometrium prior to oocyte donation.  Semin Reprod Endocrinol . 1995;  13 192-197
  • 20 Paria B C, Huet-Hudson Y M, Dey S K. Blastocyst's state of activity determines the ``window'' of implantation in the receptive mouse uterus.  Proc Natl Acad Sci U S A . 1993;  90 10159-10162
  • 21 Paria B C, Lim H, Wang X-N, Liehr J, Das S K, Dey S K. Coordination of different effects of primary estrogen and catecholestrogen on two distinct targets mediates embryo implantation in the mouse.  Endocrinology . 1998;  139 5235-5246
  • 22 Bowen J A, Burghhardt R C. Cellular mechanisms of implantation in domestic farm animals.  Semin Cell Dev Biol . 2000;  11 93-104
  • 23 Schlafke S, Enders A C. Cellular basis of interaction between trophoblast and uterus at implantation.  Biol Reprod . 1975;  12 41-65
  • 24 Parr E L, Parr M B. Epithelial cell death during rodent embryo implantation. In: Yoshinago K, ed. Blastocyst Implantation Boston: Serono Symposia USA Adams Publishing Group 1989: 105-115
  • 25 Kamijo T, Rajabi M R, Mizunuma H, Ibuki Y. Biochemical evidence for autocrine/paracrine regulation of apoptosis in cultured uterine epithelial cells during mouse embryo implantation in vitro.  Mol Hum Reprod . 1998;  4 990-998
  • 26 Galán A, O'Connor E, Valbuena D. The human blastocyst regulates endometrial epithelial apoptosis in embryonic adhesion.  Biol Reprod . 2000;  63 430-439
  • 27 Enders A C, Hendrickx A G, Schlafke S. Implantation in the rhesus monkey: initial penetration of endometrium.  Am J Anat . 1983;  167 275-298
  • 28 Smith C A, Moore H DM, Hearn J P. The ultrastructure of early implantation in the marmoset monkey (Callithrix jacchus).  Anat Embryol . 1987;  175 399-410
  • 29 Blankenship T N, Given R L. Loss of laminin and type IV collagen in uterine luminal epithelial basement membranes during blastocyst implantation in the mouse.  Anat Rec . 1995;  243 27-36
  • 30 Thie M, Fuchs P, Butz S. Adhesiveness of the apical surface of uterine epithelial cells: the role of junctional complex integrity.  Eur J Cell Biol . 1996;  70 221-232
  • 31 Given R L, Enders A C. The endometrium of early and delayed implantation. In: Wynn RM, Jollie WP, eds. Biology of the Uterus New York: Plenum 1989: 175-231
  • 32 Kimber S, White S, Cook A, Illingworth I M. The initiation of implantation: parallels between attachment of the embryo and neutrophil-endothelial interaction?. In: Mastrioianni L Jr, ed. Gametes and Embryo Quality Carnforth: Parthenon 1994: 171-198
  • 33 Sarani S A, Ghaffari-Novin M, Warren M A, Dockery P, Cooke I D. Morphological evidence for the ``implantation window'' in human luminal endometrium.  Hum Reprod . 1999;  14 3101-3106
  • 34 Albers A, Thie M, Hohn H P, Denker H W. Differential expression and localization of integrins and CD44 in the membrane domains of human uterine epithelial cell during the menstrual cycle.  Acta Anat . 1995;  153 12-21
  • 35 Potter S W, Gaza G, Morris J E. Estradiol induces E-cadherin degradation in mouse uterine epithelium during the estrous cycle and early pregnancy.  J Cell Physiol . 1996;  169 1-14
  • 36 Hyland R A, Shaw T J, Png F Y, Murphy C R. Pan-cadherin concentrates apically in uterine epithelial cells during uterine closure in rat.  Acta Histochem . 1998;  100 75-81
  • 37 Illingworth I M, Kiska I, Bagley S, Ireland G W, Garrod D W, Kimber S J. Desmosomes are reduced in the mouse uterine luminal epithelium during the pre-implantation period of pregnancy: a mechanism for facilitating implantation.  Biol Reprod . 2000;  63 1764-1773
  • 38 Murphy C R, Rogers P AW, Hosie M J, Leeton J, Beaton L. Tight junctions of human uterine epithelial cells change during the menstrual cycle: a morphometric study.  Acta Anat . 1992;  144 36-38
  • 39 Winterhager E, Kühnel W. Alterations in intercellular junctions of the uterine epithelium during the preimplantation phase in the rabbit.  Cell Tissue Res . 1982;  224 517-526
  • 40 Winterhager E, Grümmer R, Jahn K, Willecke K, Traub O. Spatial and temporal expression of connexin26 and connexin43 in rat endometrium during trophoblast invasion.  Dev Biol . 1993;  157 399-409
  • 41 Grümmer R, Chwalisz C, Mulholland J, Traub O, Winterhager E. Regulation of connexins in rat endometrium by ovarian steroid hormones.  Biol Reprod . 1994;  51 1109-1116
  • 42 Grümmer R, Traub O, Winterhager E. Gap junction connexin genes cx26 cx43 are differentially regulated by ovarian steroid hormones in rat endometrium.  Endocrinology . 1999;  140 2509-2516
  • 43 Nikas G, Develioglu O H, Toner J P, Jones H W. Endometrial pinopodes indicate a shift in the window of receptivity in IVF cycles.  Hum Reprod . 1999;  14 787-792
  • 44 Thie M, Harrach-Ruorecht B, Sauer H, Fuchs P, Albers A, Denker H W. Cell adhesion to the apical pole of epithelium: a function of cell polarity.  Eur J Cell Biol . 1995;  66 180-191
  • 45 Chervenak J L, Illsley N P. Episialin acts as an antiadhesive factor in an in vitro model of human endometrial-blastocyst attachment.  Biol Reprod . 2000;  63 294-300
  • 46 Rinkenberger J L, Cross J C, Werb Z. Molecular genetics of implantation in the mouse.  Dev Genet . 1997;  21 6-20
  • 47 Kimber S J, Waterhouse R, Lindenberg S. In vitro models for implantation. In: Bavister B, ed. Preimplantation Embryo Development New York: Springer Verlag 1993: 244-263
  • 48 Kimber S J, Spanswick C. Blastocyst implantation: the adhesion cascade.  Semin Cell Dev Biol . 2000;  11 77-92
  • 49 Leffler H. Introduction to galectins.  TIGG . 1997;  9 9-19
  • 50 Rabinovich G A. Galectins: an evolutionarily conserved family of animal lectins with multifunctional properties; a trip from the gene to clinical therapy.  Cell Death Differ . 1999;  6 711-721
  • 51 Poirier F, Timmons P M, Chan C T, Guenet J L, Rigby P W. Expression of the L14 lectin during mouse embryogenesis suggests multiple roles during pre- and post-implantation development.  Development . 1992;  115 143-155
  • 52 Weitlauf H M, Knisley K A. Changes in surface antigens on preimplantation mouse embryos.  Biol Reprod . 1992;  46 811-816
  • 53 Poirier F, Robertson E J. Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin.  Development . 1993;  119 1229-1236
  • 54 Colnot C, Fowlis D, Ripoche M-A, Bouchaert I, Poirier F. Embryonic implantation in galectin1/galectin3 double mutant mice.  Dev Dyn . 1998;  211 306-313
  • 55 Sparrow C P, Leffler H, Barondes S H. Multiple soluble beta-galactoside-binding lectins from human lung.  J Biol Chem . 1987;  262 7383-7390
  • 56 Zhou Q, Cummings R D. The S-type lectin from calf heart tissue binds selectively to the carbohydrate chains of laminin.  Arch Biochem Biophys . 1990;  281 27-35
  • 57 Cooper D N, Massa S M, Barondes S H. Endogenous muscle lectin inhibits myoblast adhesion to laminin.  J Cell Biol . 1991;  115 1437-1448
  • 58 Gu M, Wang W, Song W K, Cooper D N, Kaufman S J. Selective modulation of the interaction of alpha 7 beta 1 integrin with fibronectin and laminin by L-14 lectin during skeletal muscle differentiation.  J Cell Sci . 1994;  107 175-181
  • 59 Sutherland A E, Calarco P G, Damsky C H. Developmental regulation of integrin expression at the time of implantation in the mouse embryo.  Development . 1993;  119 1175-1186
  • 60 Colnot C, Ripoche M A, Fowlis D. The role of galectins in mouse embryogenesis.  TIGG . 1997;  9 31-40
  • 61 Vestweber D, Blanks J E. Mechanisms that regulate the function of the selectins and their ligands.  Physiol Rev . 1999;  79 181-213
  • 62 Stones R E. The expression of glycosyltransferases and their products in the murine uterus during early pregnancy. PhD thesis, University of Manchester, 1999
  • 63 Arbones M L, Ord D C, Ley K. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice.  Immunity . 1994;  1 247-260
  • 64 Bullard D C, Kunkel E J, Kubo H. Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice.  J Exp Med . 1996;  183 2329-2336
  • 65 Robinson D S, Frenette P S, Rayburn H. Multiple, targeted deficiencies in selectins reveal a predominant role for P-selectin in leukocyte recruitment.  Proc Natl Acad Sci U S A . 1999;  96 11452-11457
  • 66 Kimber S J, Brown D G, Pahlsson P, Nilsson B. Carbohydrate antigen expression in murine embryonic stem cells and embryos. II. Sialylated antigens and glycolipid analysis.  Histochem J. 1993b;  25 628-641
  • 67 Hey N A, Aplin J D. Sialyl Lewis x and sialyl Lewis a are expressed by human endometrial MUC1.  Glycoconj J . 1996;  13 769-779
  • 68 Spencer T E, Bartol F F, Bazer F W, Johnson G A, Joyce M M. Identification and characterization of glycosylation-dependent cell adhesion molecule 1-like protein expression in the ovine uterus.  Biol Reprod . 1999;  60 241-250
  • 69 Aplin J D. Adhesion molecules in implantation.  Rev Reprod . 1997;  2 84-93
  • 70 Kimber S J, Lindenberg S, Lundblad A. Distribution of some Galβ1-3(4)GlcNAc related carbohydrate antigens on the mouse uterine epithelium in relation to the peri-implantation period.  J Reprod Immunol . 1988;  12 297-313
  • 71 Kimber S J, Illingworth I M, Glasser S R. Expression of carbohydrate antigens in the rat uterus during early pregnancy and after ovariectomy and steroidal replacement.  J Reprod Fertil . 1995;  103 75-87
  • 72 Illingworth I M, Kimber S J. Demonstration of oestrogenic control of H-type-1 carbohydrate antigen in the murine endometrial epithelium by use of ICI 182,780.  J Reprod Fertil . 1999;  117 89-95
  • 73 Kimber S J, Lindenberg S. Hormonal control of carbohydrate determinants involved in implantation.  J Reprod Fertil . 1990;  89 13-21
  • 74 White S, Kimber S J. Changes in α(1-2) fucosyltransferase activity in the murine endometrial epithelium during the estrous cycle, early pregnancy and after ovariectomy and hormone replacement.  Biol Reprod . 1994;  50 73-81
  • 75 Sidhu S S, Kimber S J. Hormonal control of H-type α1-2fucosyltransferase mRNA expression in the mouse uterus.  Biol Reprod . 1999;  60 147-157
  • 76 Lindenberg S, Sundberg K, Kimber S J, Lundblad A. The milk oligosaccharide, lacto-N-fucopentaose I, inhibits attachment of mouse blastocysts on endometrial monolayers.  J Reprod Fertil . 1988;  83 149-158
  • 77 Kimber S J. Carbohydrates as low affinity agents involved in initial attachment of the mammalian embryo at implantation. In: Ward RHT, Smith SK, Donnai D, eds. Early Foetal Growth and Development London: Royal College of Obstetritians and Gynaecologists 1994: 75-102
  • 78 Ravn V, Mandel U, Svenstrup B, Dabelsteen E. Expression of type-2 histo-blood group carbohydrate antigens (Le(x), Le(y), and H) in normal and malignant human endometrium.  Virchows Arch . 1994;  424 411-419
  • 79 Lindenberg S, Kimber S J, Kallin E. Carbohydrate binding properties of mouse embryos.  J Reprod Fertil . 1990;  89 431-439
  • 80 Yamagata T, Yamazaki K. Implanting mouse embryos stain with LNF-1 bearing fluorescent probe at their mural trophectoderm side.  Biochem Biophys Res Commun . 1991;  181 1004-1009
  • 81 Fenderson B A, Holmes E H, Fukushi Y, Hakomori S. Coordinate expression of X and Y haptens during murine embryogenesis.  Dev Biol . 1986;  114 12-21
  • 82 Kimber S J. Glycoconjugates and cell surface interactions in pre- and peri-implantation development.  Int Rev Cytol . 1990;  120 53-163
  • 83 Zhu Z M, Kojima N, Stroud M R, Hakomori S, Fenderson B A. Monoclonal antibody directed to Le(y) oligosaccharide inhibits implantation in the mouse.  Biol Reprod . 1995;  52 903-912
  • 84 Ravn V, Teglbjaerg C S, Mandel U, Dabelsteen E. The distribution of type-2 chain histo-blood group antigens in normal cycling human endometrium.  Cell Tissue Res . 1992;  270 425-433
  • 85 Eggens I, Fenderson B, Toyokuni T, Dean B, Stroud M, Hakomori S. Specific interaction between Lex and Lex determinants: a possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells.  J Biol Chem . 1989;  264 9476-9484
  • 86 Fenderson B A. Saccharides involved in implantation.  TIGG . 1993;  5 271-285
  • 87 Wang X Q, Zhu Z M, Fenderson B A, Zeng G Q, Cao Y J, Jiang G T. Effect of monoclonal antibodies directed to LeY on implantation in the mouse.  Mol Hum Reprod . 1998;  4 295-300
  • 88 Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental process.  Nature . 2000;  404 725-728
  • 89 Sutherland A E, Sanderson R D, Mayes M. Expression of syndecan, a putative low affinity fibroblast growth factor receptor, in the early mouse embryo.  Development . 1991;  113 339-351
  • 90 Alexander C M, Reichsman F, Hinkes M T. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice.  Nat Genet . 2000;  25 329-332
  • 91 Carson D D, Tang J P, Julian J. Heparan sulfate proteoglycan (perlecan) expression by mouse embryos during acquisition of attachment competence.  Dev Biol . 1993;  155 97-106
  • 92 Smith S E, French M M, Julian J, Paria B C, Dey S K, Carson D D. Expression of heparan sulfate proteoglycan (perlecan) in the mouse blastocyst is regulated during normal and delayed implantation.  Dev Biol . 1997;  184 38-47
  • 93 Costell M, Gustafsson E, Aszódi A. Perlecan maintains the integrity of cartilage and some basement membranes.  J Cell Biol . 1999;  1109-1122
  • 94 Rohde L H, Carson D D. Heparin-like glycosaminoglycans participate in binding of a human trophoblastic cell line (JAR) to a human uterine epithelial cell line (RL95).  J Cell Physiol . 1993;  155 185-196
  • 95 Thie M, Herter P, Pommerenke H. Adhesiveness of the free surface of human endometrial monolayer for trophoblast as related to actin cytoskeleton.  Mol Hum Reprod . 1997;  4 275-283
  • 96 Rohde L H, Julian J, Babikania A, Carson D D. Cell surface expression of HIP, a novel heparin/heparan sulfate binding protein of human uterine epithelial cells and cell lines.  J Biol Chem . 1996;  271 11824-11830
  • 97 Hoke D E, Regisford E G, Julian J, Amin A, Bègue-Kirn C, Carson D D. Murine HIP/L29 is a heparin-binding protein with a restricted pattern of expression in adult tissues.  J Biol Chem . 1998;  273 25148-25157
  • 98 Liu S, Hoke D, Julian J, Carson D D. Heparin/heparan sulfate (HP/HS) interacting protein (HIP) supports cell attachment and selective, high affinity binding of HP/HS.  J Biol Chem . 1997;  272 25856-25862
  • 99 Rohde L H, Janapore M J, McMaster M T. Complementary expression of HIP, a cell-surface heparan sulphate binding protein, and perlecan at the human fetal-maternal interface.  Biol Reprod . 1998;  58 1075-1083
  • 100 Kallapur S G, Akeson R A. The neural cell adhesion molecule (N-CAM) heparin binding domain binds to cell surface heparan sulphate proteoglycan.  J Neurosci Res . 1992;  33 538-548
  • 101 Kimber S J, Bentley J, Ciemerych M, Moller C J, Bock E. Expression of N-CAM in fertilized pre- and periimplantation and parthenogenetically activated mouse embryos.  Eur J Cell Biol . 1994;  63 102-113
  • 102 Raab G, Kover K, Paria B C, Dey S K, Ezzell R M, Klagsbrun M. Mouse preimplantation blastocysts adhere to cells expressing the transmembrane form of heparin-binding EGF-like growth factor.  Development . 1996;  122 637-645
  • 103 Ornitz D M. FGFs, heparan sulfate and FGFRs: complex interactions essential for development.  Bioessays . 2000;  22 108-112
  • 104 Raab G, Klagsbrun M. Heparin-binding EGF-like growth factor.  Biochim Biophys Acta . 1997;  1333 F179-F199
  • 105 Paria B C, Elinius K, Klagsbrun M, Dey S K. Heparin-binding EGF-like growth factor interacts with mouse blastocysts independently of ErbB1: a possible role for heparan sulfate proteoglycans and ErbB4 in blastocyst implantation.  Development . 1999;  126 1997-2005
  • 106 Zhang Z, Funk C, Roy D, Glasser S, Mulholland J. Heparin-binding epidermal growth factor-like growth factor is differentially regulated by progesterone and estradiol in rat uterine epithelial and stromal cells.  Endocrinology . 1994;  134 1089-1094
  • 107 Wang X-N, Das S K, Damm D, Klagsbrun M, Abraham J A, Dey S K. Differential regulation of heparin-binding epidermal growth factor-like growth factor in the adult ovariectomized mouse uterus by progesterone and estrogen.  Endocrinology . 1994;  135 1264-1271
  • 108 Zhang Z, Laping J, Glasser S, Day P, Mulholland J. Mediators of estradiol-stimulated mitosis in the rat luminal epithelium.  Endocrinology . 1998;  139 961-966
  • 109 Das S K, Wang X-N, Paria B C. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation.  Development . 1994;  120 1071-1083
  • 110 Higashiyama S, Abraham J A, Klagsbrun M. Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate.  J Cell Biol . 1993;  122 933-940
  • 111 Martin K L, Barlow D H, Sargent I L. Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium.  Hum Reprod . 1998;  13 1645-1652
  • 112 Yoo H J, Barlow D H, Mardon H J. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation.  Dev Genet . 1997;  21 102-108
  • 113 Chakraborty I, Das S K, Wang J, Dey S K. Developmental expression of the cyclo-oxyenase-1 and cyclo-oxygenase-2 genes in the peri-implantation mouse uterus and their differential regulation by the blastocyst and ovarian steroids.  J Mol Endocrinol . 1996;  16 107-122
  • 114 Lim H, Paria B C, Das S K. Multiple female reproductive failures in cyclooxygenase 2-deficient mice.  Cell . 1997;  91 197-208
  • 115 Lim H, Gupta R A, Ma W G. Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARδ.  Genes Dev . 1999;  13 1561-1574
  • 116 Murohara T J, Horowwitz M, Silver Y. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin.  Circulation . 1998;  97 99-107
  • 117 Downie J, Poyser N L, Wunderlich M. Levels of prostaglandins in human endometrium during the normal menstrual cycle.  J Physiol (Lond) . 1974;  236 465-472
  • 118 Jones L J, Kelly R W, Critchley H OD. Chemokine and cyclooxygenase-2 expression in human endometrium coincides with leukocyte accumulation.  Hum Reprod . 1997;  12 1300-1306
  • 119 Marions L, Gemzell Danielsson K. Expression of cyclo-oxygenase in human endometrium during the implantation period.  Mol Hum Reprod . 1999;  5 961-965
  • 120 Meseguer M, Pellicer A, Simón C. MUC1 and endometrial receptivity.  Mol Hum Reprod . 1998;  4 1089-1098
  • 121 Ligtenberg M JL, Buijs H L, Vos L, Hilkens J. Suppression of cellular aggregation by high levels of episialin.  Cancer Res . 1992;  52 2318-2324
  • 122 Wesseling J, van der Valk W S, Vos H L, Sonnenberg A, Hilkens J. Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components.  J Cell Biol . 1995;  129 255-265
  • 123 Komatsu M, Carothers C A, Fregien N L, Carraway K L. Reversible disruption of cell-matrix and cell-cell interactions by overexpression of sialomucin complex.  J Biol Chem . 1997;  272 33245-33254
  • 124 Braga V M, Gendler S J. Modulation of Muc-1 mucin in the mouse uterus during the estrus cycle, early pregnancy and placentation.  J Cell Sci . 1993;  105 397-405
  • 125 Surveyor G A, Gendler S J, Pemberton L. Expression and steroid hormone control of Muc-1 in the mouse uterus.  Endocrinology . 1995;  136 3639-3647
  • 126 Bowen J, Bazer F W, Burghardt R C. Spatial and temporal analyses of integrin and Muc-1 expression in porcine uterine epithelium and trophectoderm in vivo.  Biol Reprod . 1996;  55 1098-1106
  • 127 Hoffman L H, Olson G E, Carson D D, Chilton B S. Progesterone and implanting blastocysts regulate Muc1 expression in rabbit uterine epithelium.  Endocrinology . 1998;  139 266-271
  • 128 Hild-Petito S, Fazleabas A T, Julian J, Carson D D. Mucin (Muc-1) expression is differentially regulated in uterine luminal and glandular epithelia of the baboon (Papio anubis).  Biol Reprod . 1996;  54 939-947
  • 129 Pimental R A, Julian J, Gendler S J, Carson D D. Synthesis and intracellular trafficking of Muc-1 and mucins by polarized mouse uterine epithelial cells.  J Biol Chem . 1996;  271 28128-28137
  • 130 DeSouza M M, Surveyor G A, Price R E. MUC1/ episialin: a critical barrier in the female reproductive tract.  J Reprod Immunol . 1999;  45 127-158
  • 131 McNeer R R, Carothers Carraway A C, Fregien N L, Carraway K L. Characterization of the expression and steroid hormone control of sialomucin complex in the rat uterus: implications for uterine receptivity.  J Cell Physiol . 1998;  176 110-119
  • 132 Idris N, Carraway K L. Sialomucin complex (Muc4) expression in the rat female reproductive tract.  Biol Reprod . 1999;  61 1431-1438
  • 133 Carraway K L, Price-Schiavi S A, Komatsu M. Multiple facets of sialomucin complex/MUC4, a membrane mucin and ERBB2 ligand, in tumours and tissues (Y2 update).  Front Biosci . 2000;  5 95-107
  • 134 Hey N A, Graham R A, Seif M W, Aplin J D. The polymorphic epithelial mucin MUC1 in human endometrium is regulated with maximal expression in the implantation phase.  J Clin Endocrinol Metab . 1994;  78 337-342
  • 135 Hey N A, Li T C, Devine P L, Aplin J D. MUC1 in secretory phase endometrium: expression in precisely dated biopsies and flushings from normal and recurrent miscarriage patients.  Hum Reprod . 1995;  10 2655-2662
  • 136 Aplin J D. The cell biology of implantation.  Placenta . 1996;  17 269-275
  • 137 Graham R A, Li T C, Cooke I D, Aplin J D. Keratan sulphate as a secretory product of human endometrium: cyclic expression in normal women.  Hum Reprod . 1994;  9 926-930
  • 138 Aplin J D, Hey N A, Graham A. Human endometrium MUC1 carries keratan sulfate: characteristic glycoforms in the luminal epithelium at receptivity.  Glycobiology . 1998;  8 269-276
  • 139 Regimbald L H, Pilarski L M, Longenecker B M, Reddish M A, Zimmermann G, Hugh J C. The breast mucin, MUCI as a novel adhesion ligand for endothelial intercellular adhesion molecule 1 in breast cancer.  Cancer Res . 1996;  56 4244-4249
  • 140 DeLoia J A, Krasnow J S, Brekosky J, Babaknia A, Julian J, Carson D D. Regional specialization of the cell membrane associated, polymorphic mucin (MUC1) in human uterine epithelia.  Mol Hum Reprod . 1998;  13 2902-2909
  • 141 Yoshimura Y. Integrins: expression, modulation, and signalling in fertilisation, embryogenesis and implantation.  Keio J Med . 1997;  46 16-24
  • 142 Fukuda M N, Sato T, Nakayama J. Trophinin and tastin, a novel cell adhesion molecule complex with potential involvement in embryo implantation.  Gene Dev . 1995;  9 1199-1210
  • 143 Suzuki N, Zara J, Sato T. A cytoplasmic protein bystin, interacts with trophinin, tastin and cytokeratin.  Proc Natl Acad Sci U S A . 1998;  95 5027-5032
  • 144 Schultz J F, Mayernik L, Rout U K, Armant D R. Integrin trafficking regulates adhesion to fibronectin during differentiation of mouse peri-implantation blastocysts.  Dev Genet . 1997;  21 31-43
  • 145 Wang J, Rout U K, Bagchi I C, Armant D R. Expression of calcitonin receptors in mouse preimplantation embryos and their function in the regulation of blastocyst differentiation.  Development. 1998b;  125 4239-4302
  • 146 Wierzbicka-Patynowski I, Niewiarowski S, Marcinkiewicz C, Calvete J J, Marcinkiewicz M M, McLane M A. Structural requirements of echistatin for the recognition of αvβ3 and α5β1 integrins.  J Biol Chem . 1999;  274 37809-37814
  • 147 Illera M J, Cullinan E, Gui Y, Yuan L, Beyler S A, Lessey B A. Blockade of the αvβ3 integrin adversely affects implantation in the mouse.  Biol Reprod . 2000;  62 1285-1290
  • 148 Turpeenniemi-Hujanen T, Ronnberg L, Kauppilam A, Puistola U. Laminin in the human embryo implantation: analogy to the invasion by malignant cells.  Fertil Steril . 1992;  58 105-113
  • 149 Thorsteindottir S. Basement membrane and fibronectin matrix are distinct entities in the developing mouse blastocyst.  Anat Rec . 1992;  232 141-149
  • 150 Wu T C, Wan Y J, Chung A E, Damjanov I. Immunohistochemical localization of entactin and laminin in early mouse embryos and fetuses.  Dev Biol . 1983;  100 496-505
  • 151 Dziadek M, Timpl R. Expression of nidogen and laminin in basement membranes during mouse embryogenesis and in teratocarcinoma cells.  Dev Biol . 1985;  111 372-382
  • 152 Adamson E D, Ayers S E. The localisation and synthesis of some collagen types in developing mouse embryos.  Cell . 1979;  16 953-965
  • 153 O'Shea K S, Liu L HJ, Kinnunen L H, Dixit V M. Role of the extracellular matrix protein thrombospondin in the early development of the mouse embryo.  J Biol Chem . 1990;  111 2713-2723
  • 154 Omigbodun A, Ziolkiewicz P, Tessler C, Hoyer J R, Coutifaris C. Progesterone regulates osteopontin expression in human trophoblasts: a model of paracrine control in the placenta?.  Endocrinology . 1997;  138 4308-4315
  • 155 Gao A G, Lindberg F P, Finn M B, Blystone S D, Brown E J, Frazier W A. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin.  J Biol Chem . 1996;  271 165-178
  • 156 Hayashi K, Madri J, Yurchenco P. Endothelial cells interact with the core protein of basement membrane perlecan through α1 and β3 integrins: an adhesion modulated by glycosaminoglycans.  J Cell Biol . 1992;  119 945-955
  • 157 Behzad F, Seif M W, Campbell S, Aplin J D. Expression of two isoforms of CD44 in human endometrium.  Biol Reprod . 1994;  51 739-747
  • 158 Brown L F, Berse B, Van de Water L. Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces.  Mol Biol Cell . 1992;  3 1169-1180
  • 159 Zheng X, Saunders T L, Camper S A, Samuelson L D, Ginsberg D. Vitronectin is not essential for mouse development and fertility.  Proc Natl Acad Sci U S A . 1995;  92 12426-12430
  • 160 George E L, George-Labouesse E N, Patel-King R S, Rayburn H, Hynes R O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin.  Development . 1993;  119 1079-1091
  • 161 Tabibzadeh S. Patterns of expression of integrin molecules in human endometrium throughout the menstrual cycle.  Hum Reprod . 1992;  7 876-882
  • 162 Klentzeris L D, Bulmer J N, Trejdosiewicz L K, Morrison L, Cooke I D. Beta-1 integrin cell adhesion molecules in the endometrium of fertile and infertile women.  Hum Reprod . 1993;  8 1223-1230
  • 163 Lessey B A, Damjanovich L, Coutifaris C, Castelbaum A, Albeda S M, Buck C A. Integrin adhesion molecules in the human endometrium: correlation with the normal and abnormal menstrual cycle.  J Clin Invest . 1992;  90 188-195
  • 164 Lessey B A, Castelbaum A J, Buck C A, Lei Y, Yowell C W, Sun J. Further characterization of endometrial integrins during the menstrual cycle and in pregnancy.  Fertil Steril . 1994;  62 497-506
  • 165 Lessey B A, Ilesanmi A O, Lessey M A, Riben M, Harris J E, Chwalisz K. Luminal and glandular endometrial epithelium express integrins differentially throughout the menstrual cycle: implications for implantation, contraception, and infertility.  Am J Reprod Immunol . 1996;  35 195-204
  • 166 Gonzalez R R, Palomino A, Boric A, Vega M, Devoto L. A quantitive evaluation of α1, α4, αV and β3 endometrial integrins of fertile and unexplained infertile women during the menstrual cycle: a flow cytometric appraisal.  Hum Reprod . 1999;  14 2485-2492
  • 167 Aplin J D, Spanswick C, Behzad F, Kimber S J, Vicovac L J. Integrins β5, β3 and αv are apically distributed in endometrial epithelium.  Mol Hum Reprod . 1996;  2 527-534
  • 168 Breuss J M, Gallo J, DeLisser H M. Expression of the β6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodelling.  J Cell Sci . 1995;  108 2241-2251
  • 169 Feinberg R F, Kliman H J, Lockwood C J. Is oncofetal fibronectin a trophoblast glue for human implantation?.  Am J Pathol . 1991;  138 537-543
  • 170 Lessey B A, Albeda S, Buck C A. Distribution of integrin cell adhesion molecules in endometrial cancer.  Am J Pathol . 1995;  146 717-726
  • 171 Lessey B A, Castelbaum A J, Sawin S J, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility.  Fertil Steril . 1995;  63 535-542
  • 172 Lessey B A, Castelbaum A J, Sawin S W. Aberrant integrin expression in the endometrium of women with endometriosis.  J Clin Endocrinol Metab . 1994;  79 643-649
  • 173 Church H J, Vicovac L J, Williams J DL, Hey N A, Aplin J D. Laminins 2 and 4 are expressed by human decidual cells.  Lab Invest . 1996;  74 21-32
  • 174 Aplin J. Maternal influences on placental development.  Semin Cell Dev Biol . 2000;  11 115-125
  • 175 Salamonsen L A. Role of proteases in implantation.  Rev Reprod . 1999;  4 11-22
  • 176 Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities.  Cell . 1991;  64 867-169
  • 177 Schlessinger J, Lax I, Lemmon M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors?.  Cell . 1995;  83 357-360
  • 178 Damsky C H, Moursi A, Zhou Y, Fisher S J, Globus R K. The solid state environment orchestrates embryonic development and tissue remodeling.  Kidney Int . 1997;  51 1427-1433
  • 179 Streuli C H, Edwards G M. Control of normal mammary phenotype by integrins.  J Mammary Gland Biol Neoplasia . 1998;  3 151-163
  • 180 Damsky C, Sutherland A, Fisher S. Extracellular matrix 5: adhesive interactions in early mammalian embryogenesis, implantation, and placentation.  FASEB J . 1993;  7 1320-1329
  • 181 Damsky C H, Fitzgerald M L, Fisher S J. Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo.  J Clin Invest . 1992;  89 210-222
  • 182 Aplin J D. Expression of integrin α6β4 in human trophoblast and its loss from extravillous cells.  Placenta . 1993;  14 203-215
  • 183 Damsky C H, Librach C, Lim K H. Integrin switching regulates normal trophoblast invasion.  Development . 1994;  120 3657-3666
  • 184 Pijnenborg R, Vercruysse L, Verbist L, Vabassche F A. Interaction of interstitial trophoblast with placental bed capillaries and venules of normotensive and pre-eclamptic pregnancies.  Placenta . 1998;  19 569-575
  • 185 ZhouY, Damsky C H, Roberts J M, Fisher J J. Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblast.  J Clin Invest . 1993;  91 950-960
  • 186 Yelian F D, Yang Y, Hirata J D, Schultz J F, Armant D R. Molecular interactions between fibronectin and integrins during mouse blastocyst outgrowth.  Mol Reprod Dev . 1995;  41 435-448
  • 187 Stephens L E, Sutherland A E, Klimanskaya I V. Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality.  Genes Dev . 1995;  9 1883-1895
  • 188 Brakebusch C, Hirsch E, Potocnik A, Fassler R. Genetic analysis of β1 integrin function: confirmed new and revised roles for a crucial family of cell adhesion molecules.  J Cell Sci . 1997;  110 2895-2904
    >