Semin intervent Radiol 2025; 42(02): 219-228
DOI: 10.1055/s-0045-1802308
Review Article

Embryology of the Vascular System: Implications for Variants

Ronak K. Patel
1   University of Kentucky College of Medicine, William R. Willard Medical Education Building, Lexington, Kentucky
,
Curtis L. Simmons
2   Department of Radiology, Phoenix Children's Hospital, Phoenix, Arizona
,
Merve Ozen
3   Department of Radiology, Mayo Clinic, Phoenix, Arizona
› Institutsangaben

Funding None.

Abstract

The vascular system is an intricate system that develops during early periods of embryogenesis. Through a complex signaling pathway of vasculogenesis and angiogenesis, embryonic vessels grow and coalesce, which allows nutrient and waste management. Dysfunction in these endothelial cells gives rise to vascular variants. Throughout gestational development, vascular variants can form in different organ systems such as the thoracic cavity, hepatic, renal, and lower pelvis. It is clinically very important for physicians to recognize these variants, as these variants can predispose to certain illnesses and treatment of patients surgically. This article discusses the embryology and vascular variants of the arterial system with a focus on the thoracic cavity, hepatic, renal, and pelvic variations to help aid in minimizing technical complications during procedures.



Publikationsverlauf

Artikel online veröffentlicht:
20. Februar 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Heinke J, Patterson C, Moser M. Life is a pattern: vascular assembly within the embryo. Front Biosci (Elite Ed) 2012; 4 (06) 2269-2288
  • 2 Furtado J, Eichmann A. Chapter nine - vascular development, remodeling and maturation. In: Mallo M. ed. Current Topics in Developmental Biology. Academic Press; 2024: 344-370
  • 3 Beck Jr L, D'Amore PA. Vascular development: cellular and molecular regulation. FASEB J 1997; 11 (05) 365-373
  • 4 Craig MP, Grajevskaja V, Liao HK. et al. Etv2 and fli1b function together as key regulators of vasculogenesis and angiogenesis. Arterioscler Thromb Vasc Biol 2015; 35 (04) 865-876
  • 5 Udan RS, Culver JC, Dickinson ME. Understanding vascular development. Wiley Interdiscip Rev Dev Biol 2013; 2 (03) 327-346
  • 6 Majesky MW. Vascular development. Arterioscler Thromb Vasc Biol 2018; 38 (03) e17-e24
  • 7 Jain RK. Molecular regulation of vessel maturation. Nat Med 2003; 9 (06) 685-693
  • 8 Ramirez F, Caescu C, Wondimu E, Galatioto J. Marfan syndrome; a connective tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell stemness. Matrix Biol 2018; 71-72: 82-89
  • 9 Nguyen HL, Boon LM, Vikkula M. Vascular anomalies caused by abnormal signaling within endothelial cells: targets for novel therapies. Semin Intervent Radiol 2017; 34 (03) 233-238
  • 10 Alraddadi A. Literature review of anatomical variations: clinical significance, identification approach, and teaching strategies. Cureus 2021; 13 (04) e14451
  • 11 Kowalczyk KA, Majewski A. Analysis of surgical errors associated with anatomical variations clinically relevant in general surgery. Review of the literature. Transl Res Anat 2021; 23: 100107
  • 12 Muhr J, Arbor TC, Ackerman KM. Embryology, Gastrulation. Stat Pearls; 2024
  • 13 Buijtendijk MFJ, Barnett P, van den Hoff MJB. Development of the human heart. Am J Med Genet C Semin Med Genet 2020; 184 (01) 7-22
  • 14 Sylva M, van den Hoff MJB, Moorman AFM. Development of the human heart. Am J Med Genet A 2014; 164A (06) 1347-1371
  • 15 Lescroart F, Kelly RG, Le Garrec JF, Nicolas JF, Meilhac SM, Buckingham M. Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 2010; 137 (19) 3269-3279
  • 16 Schleich J-M, Abdulla T, Summers R, Houyel L. An overview of cardiac morphogenesis. Arch Cardiovasc Dis 2013; 106 (11) 612-623
  • 17 Houyel L, Bajolle F, Capderou A, Laux D, Parisot P, Bonnet D. The pattern of the coronary arterial orifices in hearts with congenital malformations of the outflow tracts: a marker of rotation of the outflow tract during cardiac development?. J Anat 2013; 222 (03) 349-357
  • 18 Hanneman K, Newman B, Chan F. Congenital variants and anomalies of the aortic arch. Radiographics 2017; 37 (01) 32-51
  • 19 Spacek M, Veselka J. Bovine arch. Arch Med Sci 2012; 8 (01) 166-167
  • 20 Gaydarski L, Angelov M, Tivcheva Y, Krastev N, Landzhov B. A rare case of thyroidea ima arising from the internal thoracic artery and reaching up to the parathyroid gland. Cureus 2023; 15 (11) e49551
  • 21 Türkvatan A, Büyükbayraktar FG, Olçer T, Cumhur T. Congenital anomalies of the aortic arch: evaluation with the use of multidetector computed tomography. Korean J Radiol 2009; 10 (02) 176-184
  • 22 Imanzadeh F, Hosseini A, Rashid M. et al. Right-sided aortic arch with aberrant left subclavian artery diagnosed in an infant with regurgitation. Gastroenterol Hepatol Bed Bench 2022; 15 (01) 99-102
  • 23 Murray A, Meguid EA. Anatomical variation in the branching pattern of the aortic arch: a literature review. Ir J Med Sci 2023; 192 (04) 1807-1817
  • 24 Collardeau-Frachon S, Scoazec JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken) 2008; 291 (06) 614-627
  • 25 Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell 2010; 18 (02) 175-189
  • 26 Watson CJE, Harper SJF. Anatomical variation and its management in transplantation. Am J Transplant 2015; 15 (06) 1459-1471
  • 27 Yi S-Q, Terayama H, Naito M. et al. Absence of the celiac trunk: case report and review of the literature. Clin Anat 2008; 21 (04) 283-286
  • 28 Kikuya K, Einama T, Miyata Y. et al. Destruction of a wandering accessory right hepatic artery in a patient with pancreatic body cancer: a case report. Clin J Gastroenterol 2021; 14 (02) 560-565
  • 29 Malviya KK, Verma A. Importance of anatomical variation of the hepatic artery for complicated liver and pancreatic surgeries: a review emphasizing origin and branching. Diagnostics (Basel) 2023; 13 (07) 1233
  • 30 Iacob N, Pusztai AM, Miclăuş GD, Pop E, Matusz P. An anomalous origin of the gastrosplenic trunk and common hepatic artery arising independently from the abdominal aorta: a case report using MDCT angiography. Rom J Morphol Embryol 2018; 59 (01) 353-357
  • 31 Favelier S, Germain T, Genson PY. et al. Anatomy of liver arteries for interventional radiology. Diagn Interv Imaging 2015; 96 (06) 537-546
  • 32 Shukla PJ, Barreto SG, Kulkarni A, Nagarajan G, Fingerhut A. Vascular anomalies encountered during pancreatoduodenectomy: Do they influence outcomes?. Ann Surg Oncol 2010; 17 (01) 186-193
  • 33 Covey AM, Brody LA, Maluccio MA, Getrajdman GI, Brown KT. Variant hepatic arterial anatomy revisited: digital subtraction angiography performed in 600 patients. Radiology 2002; 224 (02) 542-547
  • 34 Madhu YC, Harish K. Accessory right hepatic artery and its implications for a surgeon. Indian J Surg 2013; 75 (Suppl. 01) 492-494
  • 35 Ryan S, McNicholas M, Eustace SJ. Anatomy for Diagnostic Imaging. Saunders/Elsevier; 2011
  • 36 Leckie A, Tao MJ, Narayanasamy S, Khalili K, Schieda N, Krishna S. The renal vasculature: what the radiologist needs to know. Radiographics 2021; 41 (05) 1531-1548
  • 37 el-Galley RES, Keane TE. Embryology, anatomy, and surgical applications of the kidney and ureter. Surg Clin North Am 2000; 80 (01) 381-401 , xiv
  • 38 Yufa A, Mikael A, Lara G, Nurick H, Andacheh I. Accessory renal arteries involved in atherosclerotic occlusive disease at the aortic bifurcation. J Vasc Surg Cases Innov Tech 2020; 6 (03) 425-429
  • 39 Budhiraja V, Rastogi R, Anjankar V, Babu CS, Goel P. Supernumerary renal arteries and their embryological and clinical correlation: a cadaveric study from north India. ISRN Anat 2013; 2013: 405712
  • 40 Talović E, Kulenović A, Voljevica A, Kapur E. Review of the supernumerary renal arteries by dissection method. Acta Med Acad 2007; 36 (02) 59-69
  • 41 Beckmann CF, Abrams HL. Renal venography: anatomy, technique, applications, analysis of 132 venograms, and a review of the literature. Cardiovasc Intervent Radiol 1980; 3 (01) 45-70
  • 42 Beyer RW, Daily PO. Renal artery dissection associated with Gz acceleration. Aviat Space Environ Med 2004; 75 (03) 284-287
  • 43 Sampaio FJ, Passos MA. Renal arteries: anatomic study for surgical and radiological practice. Surg Radiol Anat 1992; 14 (02) 113-117
  • 44 Shoja MM, Tubbs RS, Shakeri A, Ardalan MR, Rahimi-Ardabili B, Ghabili K. Asymptomatic bilateral ureteropelvic junction obstruction due to supernumerary renal arteries. Saudi J Kidney Dis Transpl 2008; 19 (05) 806-808
  • 45 Eid S, Iwanaga J, Loukas M, Oskouian RJ, Tubbs RS. Pelvic kidney: a review of the literature. Cureus 2018; 10 (06) e2775
  • 46 Cinman NM, Okeke Z, Smith AD. Pelvic kidney: associated diseases and treatment. J Endourol 2007; 21 (08) 836-842
  • 47 Beckmann CF, Abrams HL. Circumaortic venous ring: incidence and significance. AJR Am J Roentgenol 1979; 132 (04) 561-565
  • 48 Rao B, Duran C, Steigner ML, Rybicki FJ. Inferior vena cava filter-associated abnormalities: MDCT findings. AJR Am J Roentgenol 2012; 198 (06) W605-W610
  • 49 Trigaux JP, Vandroogenbroek S, De Wispelaere JF, Lacrosse M, Jamart J. Congenital anomalies of the inferior vena cava and left renal vein: evaluation with spiral CT. J Vasc Interv Radiol 1998; 9 (02) 339-345
  • 50 Hsieh CL, Tiao WM, Chou YH, Tiu CM. Retroaortic left renal vein: three case reports. J Med Ultrasound 2012; 20 (02) 115-118
  • 51 Wang W, Padilla R, Padilla E, Hernandez M, Kumar S, Lall C. Two rare cases of circumaortic left renal vein with double retroaortic limbs and its procedural implications. Radiol Case Rep 2023; 19 (01) 48-52
  • 52 Urban BA, Ratner LE, Fishman EK. Three-dimensional volume-rendered CT angiography of the renal arteries and veins: normal anatomy, variants, and clinical applications. Radiographics 2001; 21 (02) 373-386 , 549–555
  • 53 Arévalo Pérez J, Gragera Torres F, Marín Toribio A, Koren Fernández L, Hayoun C, Daimiel Naranjo I. Angio CT assessment of anatomical variants in renal vasculature: its importance in the living donor. Insights Imaging 2013; 4 (02) 199-211
  • 54 Qazi E, Wilting J, Patel NR. et al. Arteries of the lower limb-embryology, variations, and clinical significance. Can Assoc Radiol J 2022; 73 (01) 259-270
  • 55 O'Rahilly R, Müller F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 2010; 192 (02) 73-84
  • 56 Chantalat E, Merigot O, Chaynes P, Lauwers F, Delchier MC, Rimailho J. Radiological anatomical study of the origin of the uterine artery. Surg Radiol Anat 2014; 36 (10) 1093-1099
  • 57 Selçuk İ, Yassa M, Tatar İ, Huri E. Anatomic structure of the internal iliac artery and its educative dissection for peripartum and pelvic hemorrhage. Turk J Obstet Gynecol 2018; 15 (02) 126-129
  • 58 Horton AW, Patel U, Belli AM. An unusual arterial supply to the uterus. A case report and review of anatomy—implications for uterine artery embolization. Clin Radiol 2010; 65 (12) 1038-1042
  • 59 Arfi A, Arfi-Rouche J, Barrau V, Nyangoh Timoh K, Touboul C. Three-dimensional computed tomography angiography reconstruction of the origin of the uterine artery and its clinical significance. Surg Radiol Anat 2018; 40 (01) 85-90
  • 60 Kozlov SV, Dvoretskii D, Alekseenko L. et al. Anatomical Variants of Uterine Arteries. Ukraïnsʹkij žurnal Medicini, Bìologìï ta Sportu 2018; (03) 32-37
  • 61 Albulescu D, Constantin C, Constantin C. Uterine artery emerging variants - angiographic aspects. Curr Health Sci J 2014; 40 (03) 214-216
  • 62 Hao YX, Wang KF, Wang GR. et al. [Value of the CT angiography in displaying the anatomical variations of the origin of uterus artery]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2019; 41 (02) 216-219
  • 63 Gomez-Jorge J, Keyoung A, Levy EB, Spies JB. Uterine artery anatomy relevant to uterine leiomyomata embolization. Cardiovasc Intervent Radiol 2003; 26 (06) 522-527
  • 64 Holub Z, Lukac J, Kliment L, Urbanek S. Variability of the origin of the uterine artery: laparoscopic surgical observation. J Obstet Gynaecol Res 2005; 31 (02) 158-163
  • 65 Osher M, Semaan D, Esq DO. The uterine arteries, anatomic variation and the implications pertaining to uterine artery embolization. J Vasc Interv Radiol 2014; 25 (03) S143
  • 66 Wan AY, Shin JH, Yoon HK. et al. Post-operative hemorrhage after myomectomy: safety and efficacy of transcatheter uterine artery embolization. Korean J Radiol 2014; 15 (03) 356-363
  • 67 Ozen M, Patel R, Hoffman M, Raissi D. Update on endovascular therapy for fibroids and adenomyosis. Semin Intervent Radiol 2023; 40 (04) 327-334
  • 68 Dossou M, Debost-Legrand A, Déchelotte P, Lémery D, Vendittelli F. Severe secondary postpartum hemorrhage: a historical cohort. Birth 2015; 42 (02) 149-155
  • 69 Peters A, Stuparich MA, Mansuria SM, Lee TT. Anatomic vascular considerations in uterine artery ligation at its origin during laparoscopic hysterectomies. Am J Obstet Gynecol 2016; 215 (03) 393.e1-393.e3