ZWR - Das Deutsche Zahnärzteblatt 2017; 126(12): 616-621
DOI: 10.1055/s-0043-121054
Fortbildung | Umweltzahnmedizin
Georg Thieme Verlag KG Stuttgart · New York

Titankorrosion und die Folgen: Argumente für Zirkon

Elisabeth Jacobi-Gresser
Further Information

Publication History

Publication Date:
20 December 2017 (online)

Titanimplantate unterliegen einer mehr oder weniger ausgeprägten Tribokorrosion in Abhängigkeit von ihrer Oberflächenmodifikation und entlassen Metallpartikel in umgebende Gewebe. Die Partikeldissemination kann einerseits immunogene und andererseits toxische Reaktionen auslösen. Infolge von Makrophagenaktivierung kommt es zur Ausschüttung von proentzündlichen Zytokinen wie TNF-α und IL-1β. Biofilmadhäsion an der Implantatoberfläche verstärkt zudem die Korrosionsprozesse.

 
  • Literatur

  • 1 Trindade R, Albrektsson T, Tengvall P. et al. Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration. Clin Implant Dent Relat Res 2014; 18: 192-203
  • 2 Schliephake H, Neukam FW, Urban R. Titanbelastung parenchymatöser Organe nach Insertion von Titanschraubenimplantaten. Z Zahnärzt Implantol 1989; 5: 180-184
  • 3 Weingart D, Steinemann S, Schilli W. et al. Titanium deposition in regional lymph nodes after insertion of titanium screw implants. Int J Oral Maxillofac Surg 1994; 23: 450-452
  • 4 Urban RM, Jacobs JJ, Tomlinson MJ. et al. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000; 82: 457-476
  • 5 Landolt D. Electrochemical and materials aspects of tribocorrosion systems. J Phys D: Appl Phys 2006; 39: 3121
  • 6 Meyer U, Buhner M, Buchter A. et al. Fast element mapping of titanium wear around implants of different surface structures. Clin Oral Implant Res 2006; 17: 206-211
  • 7 Nakashima Y, Sun DH, Trindade M. et al. Signaling pathway for tumor necrosis factor-a and interleukon-6 expression in human macrophagees exposed to titanium-alloy particulate debris in vitro. J Bone Joint Surg 1999; 81: 603-613
  • 8 Olmedo DG, Paparella ML, Spielberg M. et al. Oral mucosa tissue response to titanium cover screws. J Periodontol 2012; 83: 973-980
  • 9 Olmedo D, Fernández MM, Guglielmotti MB. et al. Macrophages related to dental implant failure. Implant Dent 2003; 12: 75-80
  • 10 Jacobi-Gresser E, Huesker K, Schutt S. Genetic and immunological markers predict titanium implant failure: a retrospective study. Int J Oral Maxillofac Surg 2013; 42: 537-543
  • 11 Liao J, Li C, Wang Y. et al. Meta-analysis of the association between common interleukin-1 polymorphisms and dental implant failure. Mol Biol Rep 2014; 41: 2789-2798
  • 12 Degidi M, Artese L, Scarano A. et al. Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. J Periodontol 2006; 77: 73-80
  • 13 Albrektsson T, Dahlin C, Jemt T. et al. Is marginal bone loss around oral implants the result of a provoked foreign body reaction?. Clin Implant Dent Relat Res 2014; 16: 155-165
  • 14 Sterner T, Schütze N, Saxler G. et al. [Effects of clinically relevant alumina ceramic, zirconia ceramic and titanium particles of different sizes and concentrations on TNF-alpha release in a human macrophage cell line]. Biomed Tech (Berl) 2004; 49: 340-344
  • 15 Bruno ME, Tasat DR, Ramos E. et al. Impact through time of different sized titanium dioxide particles on biochemical and histopathological parameters. J Biomed Mater Res A 2014; 102: 1439-1448
  • 16 Jeon YM, Kim WJ, Lee MY. Studies on liver damage induced by nanosized-titanium dioxide in mouse. J Environ Biol 2013; 34: 283-287
  • 17 Feng X, Chen A, Zhang Y. et al. Application of dental nanomaterials: potential toxicity to the central nervous system. Int J Nanomedicine 2015; 10: 3547-3565
  • 18 Chappuis V, Cavusoglu Y, Gruber R. et al. Osseointegration of zirconia in the presence of multinucleated giant cells. Clin Implant Dent Relat Res 2016; 18: 686-698 doi:10.1111/cid.12375
  • 19 Kohal RJ, Weng D, Bächle M. et al. Loadet custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J Periodontol 2004; 75: 1262-1268
  • 20 Gahlert M, Roehling S, Sprecher CM. et al. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae. Clin Oral Implants Res 2012; 23: 281-286
  • 21 Pettersson M, Kelk P, Belibasakis GN. et al. Titanium ions form particles that activate and execute interleukin-1beta release from lipopolysaccharide-primed macrophages. J Periodontal Res 2017; 52: 21-32 doi:10.1111/jre.12364
  • 22 Scridhar S, Wilson jr. TG, Palmer KL. et al. In vitro investigation of the effect of oral bacteria in the surface oxidation of dental implants. Clin Implant Dent Relat Res 2015; 17: e562-e575
  • 23 Rimondini L, Cerroni L, Carrassi A. et al. Bacterial colonization of zirconia ceramic sufaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants 2002; 17: 793-798
  • 24 Scarano A, Piattelli M, Caputi S. et al. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol 2004; 75: 292-296
  • 25 Al-Ahmad A, Wiedmann-Al-Ahmad M, Fackler A. et al. In vivo study of the initial bacterial adhesion on different implant materials. Arch Oral Biol 2013; 58: 1139-1147
  • 26 Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I. et al. In vitro biofilm formation on titanium and zirconia implant surfaces. J Periodontol 2017; 88: 298-307
  • 27 Teughels W, Van Assche N, Sliepen I. et al. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006; 17: 68-81
  • 28 Meissen R, Mintcheva M, Netuschil L. Matrix-Metalloproteinase-8-Spiegel in der periimplantären Sulkusflüssigkeit an Titan- und Zirkonnitridoberflächen. Int Par Rest Zahnheilk 2014; 34: 91-95