Thromb Haemost 2022; 122(10): 1767-1778
DOI: 10.1055/s-0042-1749328
Stroke, Systemic or Venous Thromboembolism

DNA Methylation and Ischemic Stroke Risk: An Epigenome-Wide Association Study

Natalia Cullell*
1   Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
2   Department of Neurology, Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Barcelona, Spain
3   Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
,
Carolina Soriano-Tárraga*
4   Neurovascular Research Group, Department of Neurology, Hospital del Mar, IMIM, Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
5   Department of Psychiatry, NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, Missouri, United States
,
Cristina Gallego-Fábrega
1   Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
,
Jara Cárcel-Márquez
1   Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
,
Nuria P. Torres-Águila
1   Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
6   Evolutionary Developmental Genomics Research Group, The Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
,
Elena Muiño
1   Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
,
Miquel Lledós
1   Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
,
Laia Llucià-Carol
1   Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
7   Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
,
Manel Esteller
8   Josep Carreras Leukaemia Research Institute, Barcelona, Spain
9   Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
10   Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
11   Centro de Investigación Biomédica en Red Cancer, Barcelona, Spain
,
Manuel Castro de Moura
8   Josep Carreras Leukaemia Research Institute, Barcelona, Spain
,
Joan Montaner
12   Department of Neurology, Hospital Universitario Virgen Macarena, Institute of Biomedicine of Seville/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
,
Alba Fernández-Sanlés
13   Cardiovascular Epidemiology and Genetics Research Group, IMIM, Barcelona, Spain
14   Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
,
Roberto Elosua
13   Cardiovascular Epidemiology and Genetics Research Group, IMIM, Barcelona, Spain
15   CIBER Cardiovascular Diseases, Instituto Carlos III, Barcelona, Spain
16   School of Medicine, University of Vic-Central University of Catalonia, Barcelona, Spain
,
Pilar Delgado
17   Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Barcelona, Spain
,
Joan Martí-Fábregas
18   Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
,
Jerzy Krupinski
2   Department of Neurology, Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Barcelona, Spain
19   Centre for Bioscience, School of HealthCare Science, Manchester Metropolitan University, Manchester, England
,
Jaume Roquer
4   Neurovascular Research Group, Department of Neurology, Hospital del Mar, IMIM, Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
,
Jordi Jiménez-Conde
4   Neurovascular Research Group, Department of Neurology, Hospital del Mar, IMIM, Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
,
Israel Fernández-Cadenas
1   Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí, Barcelona, Spain
2   Department of Neurology, Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Barcelona, Spain
› Author Affiliations
Funding The EPIGENESIS project (Carlos III Institute—PI17/02089, Marató TV3 and Fundació MútuaTerrassa), the MAESTRO project—PI18/01338 (Carlos III Institute), the iBioStroke project (Eranet-Neuron, European research grants), the EPINEXO project—PI20/00678 (Carlos III Institute), the SEDMAN Study (Boehringer Ingelheim), the APHAS project (Pfizer/Bristol-Myers Squibb), and the European Regional Development Fund (ERDF)/Fondo Europeo de Desarrollo Regional (FEDER) and 2017SGR-1427 (AGAUR). I.F.-C is the recipient of a research contract from the Miguel Servet Program (CP12/03298) from the Carlos III Institute. J.C.-M. is supported by an AGAUR contract (Agència de Gestió d'Ajuts Universitaris i de Recerca; FI_DGR 2019, grant number 2019_FI_B 00853) co-financed by Fons Social Europeu (FSE). M.L. is supported by a PFIS contract (Contratos Predoctorales de Formación en Investigación en Salud): FI19/00309. C.G.-F is supported by a Sara Borrell contract (CD20/00043) from the Carlos III Institute and Fondo Europeo de Desarrollo Regional (ISCIII-FEDER). E.M. is supported by a Río Hortega contract (CM18/00198) from the Carlos III Institute.

Abstract

Background Ischemic stroke (IS) risk heritability is partly explained by genetics. Other heritable factors, such as epigenetics, could explain an unknown proportion of the IS risk. The objective of this study is to evaluate DNA methylation association with IS using epigenome-wide association studies (EWAS).

Methods We performed a two-stage EWAS comprising 1,156 subjects. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) were assessed using the Infinium 450K and EPIC BeadChip in the discovery cohort (252 IS and 43 controls). Significant DMPs were replicated in an independent cohort (618 IS and 243 controls). Stroke subtype associations were also evaluated. Differentially methylated cell-type (DMCT) was analyzed in the replicated CpG sites using EpiDISH. We additionally performed pathway enrichment analysis and causality analysis with Mendelian randomization for the replicated CpG sites.

Results A total of 957 CpG sites were epigenome-wide-significant (p ≤ 10−7) in the discovery cohort, being CpG sites in the top signals (logFC = 0.058, p = 2.35 × 10−22; logFC = 0.035, p = 3.22 × 10−22, respectively). ZFHX3 and MAP3K1 were among the most significant DMRs. In addition, 697 CpG sites were replicated considering Bonferroni-corrected p-values (p < 5.22 × 10−5). All the replicated DMPs were associated with risk of cardioembolic, atherothrombotic, and undetermined stroke. The DMCT analysis demonstrated that the significant associations were driven by natural killer cells. The pathway enrichment analysis showed overrepresentation of genes belonging to certain pathways including oxidative stress. ZFHX3 and MAP3K1 methylation was causally associated with specific stroke-subtype risk.

Conclusion Specific DNA methylation pattern is causally associated with IS risk. These results could be useful for specifically predicting stroke occurrence and could potentially be evaluated as therapeutic targets.

* These authors contributed equally to this work.


Supplementary Material



Publication History

Received: 21 September 2021

Accepted: 12 April 2022

Article published online:
19 June 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bevan S, Traylor M, Adib-Samii P. et al. Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke 2012; 43 (12) 3161-3167
  • 2 Traylor M, Farrall M, Holliday EG. et al; Australian Stroke Genetics Collaborative, Wellcome Trust Case Control Consortium 2 (WTCCC2), International Stroke Genetics Consortium. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol 2012; 11 (11) 951-962
  • 3 Malik R, Chauhan G, Traylor M. et al; AFGen Consortium, Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, International Genomics of Blood Pressure (iGEN-BP) Consortium, INVENT Consortium, STARNET, BioBank Japan Cooperative Hospital Group, COMPASS Consortium, EPIC-CVD Consortium, EPIC-InterAct Consortium, International Stroke Genetics Consortium (ISGC), METASTROKE Consortium, Neurology Working Group of the CHARGE Consortium, NINDS Stroke Genetics Network (SiGN), UK Young Lacunar DNA Study, MEGASTROKE Consortium. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 2018; 50 (04) 524-537
  • 4 NINDS Stroke Genetics Network (SiGN), International Stroke Genetics Consortium (ISGC). Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol 2016; 15 (02) 174-184
  • 5 Malik R, Rannikmäe K, Traylor M. et al; MEGASTROKE consortium and the International Stroke Genetics Consortium. Genome-wide meta-analysis identifies 3 novel loci associated with stroke. Ann Neurol 2018; 84 (06) 934-939
  • 6 Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38 (01) 23-38
  • 7 Chambers JC, Loh M, Lehne B. et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol 2015; 3 (07) 526-534
  • 8 Rask-Andersen M, Martinsson D, Ahsan M. et al. Epigenome-wide association study reveals differential DNA methylation in individuals with a history of myocardial infarction. Hum Mol Genet 2016; 25 (21) 4739-4748
  • 9 Gallego-Fabrega C, Carrera C, Reny JL. et al. TRAF3 epigenetic regulation is associated with vascular recurrence in patients with ischemic stroke. Stroke 2016; 47 (05) 1180-1186
  • 10 Gallego-Fabrega C, Carrera C, Reny JL. et al. PPM1A methylation is associated with vascular recurrence in aspirin-treated patients. Stroke 2016; 47 (07) 1926-1929
  • 11 Davis Armstrong NM, Chen WM, Brewer MS. et al. Epigenome-wide analyses identify two novel associations with recurrent stroke in the vitamin intervention for stroke prevention clinical trial. Front Genet 2018; 9: 358
  • 12 Shen Y, Peng C, Bai Q. et al. Epigenome-wide association study indicates hypomethylation of MTRNR2L8 in large-artery atherosclerosis stroke. Stroke 2019; 50 (06) 1330-1338
  • 13 Soriano-Tárraga C, Jiménez-Conde J, Giralt-Steinhauer E. et al; GeneStroke, “The Spanish Stroke Genetics Consortium”. Global DNA methylation of ischemic stroke subtypes. PLoS One 2014; 9 (04) e96543
  • 14 Soriano-Tárraga C, Lazcano U, Giralt-Steinhauer E. et al. Identification of 20 novel loci associated with ischaemic stroke. Epigenome-wide association study. Epigenetics 2020; 15 (09) 988-997
  • 15 Min JL, Hemani G, Davey Smith G, Relton C, Suderman M. Meffil: efficient normalization and analysis of very large DNA methylation datasets. Bioinformatics 2018; 34 (23) 3983-3989
  • 16 Fernández-Cadenas I, Mendióroz M, Giralt D. et al; GRECOS Study Group. GRECOS project (genotyping recurrence risk of stroke): the use of genetics to predict the vascular recurrence after stroke. Stroke 2017; 48 (05) 1147-1153
  • 17 Carrera C, Cullell N, Torres-Águila N. et al; Spanish Stroke Genetic Consortium. Validation of a clinical-genetics score to predict hemorrhagic transformations after rtPA. Neurology 2019; 93 (09) e851-e863
  • 18 Roquer J, Rodríguez-Campello A, Gomis M. et al. Acute stroke unit care and early neurological deterioration in ischemic stroke. J Neurol 2008; 255 (07) 1012-1017
  • 19 Sayols-Baixeras S, Lluís-Ganella C, Subirana I. et al. Identification of a new locus and validation of previously reported loci showing differential methylation associated with smoking. The REGICOR study. Epigenetics 2015; 10 (12) 1156-1165
  • 20 Morris TJ, Butcher LM, Feber A. et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics 2014; 30 (03) 428-430
  • 21 Graw S, Henn R, Thompson JA, Koestler DC. pwrEWAS: a user-friendly tool for comprehensive power estimation for epigenome wide association studies (EWAS). BMC Bioinformatics 2019; 20 (01) 218
  • 22 Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res 2017; 45 (04) e22
  • 23 LaBarre BA, Goncearenco A, Petrykowska HM. et al. MethylToSNP: identifying SNPs in Illumina DNA methylation array data. Epigenetics Chromatin 2019; 12 (01) 79
  • 24 Adams HJr, Bendixen BH, Kappelle LJ. et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 1993; 24 (01) 35-41
  • 25 van Iterson M, van Zwet EW, Heijmans BT. BIOS Consortium. Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution. Genome Biol 2017; 18 (01) 19
  • 26 Peters TJ, Buckley MJ, Statham AL. et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 2015; 8: 6
  • 27 Zheng SC, Breeze CE, Beck S, Teschendorff AE. Identification of differentially methylated cell types in epigenome-wide association studies. Nat Methods 2018; 15 (12) 1059-1066
  • 28 Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16 (05) 284-287
  • 29 Hemani G, Zheng J, Elsworth B. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018; 7: e34408
  • 30 Chen C, Ai QD, Chu SF, Zhang Z, Chen NH. NK cells in cerebral ischemia. Biomed Pharmacother 2019; 109: 547-554
  • 31 Gan Y, Liu Q, Wu W. et al. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci U S A 2014; 111 (07) 2704-2709
  • 32 Wang Y, Liu J, Wang X. et al. Frequencies of circulating B- and T-lymphocytes as indicators for stroke outcomes. Neuropsychiatr Dis Treat 2017; 13: 2509-2518
  • 33 Brenet F, Moh M, Funk P. et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 2011; 6 (01) e14524
  • 34 Caplan LR. Lacunar infarction and small vessel disease: pathology and pathophysiology. J Stroke 2015; 17 (01) 2-6
  • 35 Tong DC, Yenari MA, Albers GW, O'Brien M, Marks MP, Moseley ME. Correlation of perfusion- and diffusion-weighted MRI with NIHSS score in acute (<6.5 hour) ischemic stroke. Neurology 1998; 50 (04) 864-870
  • 36 Fink JN, Selim MH, Kumar S. et al. Is the association of National Institutes of Health Stroke Scale scores and acute magnetic resonance imaging stroke volume equal for patients with right- and left-hemisphere ischemic stroke?. Stroke 2002; 33 (04) 954-958
  • 37 Suchiman HED, Slieker RC, Kremer D, Slagboom PE, Heijmans BT, Tobi EW. Design, measurement and processing of region-specific DNA methylation assays: the mass spectrometry-based method EpiTYPER. Front Genet 2015; 6: 287
  • 38 Nakatochi M, Ichihara S, Yamamoto K. et al. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clin Epigenetics 2017; 9: 54
  • 39 Lee SR, Lo EH. Interactions between p38 mitogen-activated protein kinase and caspase-3 in cerebral endothelial cell death after hypoxia-reoxygenation. Stroke 2003; 34 (11) 2704-2709
  • 40 Sun J, Nan G. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci 2016; 59 (01) 90-98
  • 41 Eyileten C, Wicik Z, De Rosa S. et al. MicroRNAs as diagnostic and prognostic biomarkers in ischemic stroke-a comprehensive review and bioinformatic analysis. Cells 2018; 7 (12) E249
  • 42 Kojima Y, Volkmer JP, McKenna K. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 2016; 536 (7614): 86-90
  • 43 Wang Y, Cooke MJ, Lapitsky Y. et al. Transport of epidermal growth factor in the stroke-injured brain. J Control Release 2011; 149 (03) 225-235
  • 44 Sohrabji F, Okoreeh A, Panta A. Sex hormones and stroke: beyond estrogens. Horm Behav 2019; 111: 87-95
  • 45 Courties G, Frodermann V, Honold L. et al. Glucocorticoids regulate bone marrow B lymphopoiesis after stroke. Circ Res 2019; 124 (09) 1372-1385