Sportphysio 2017; 05(01): 39-45
DOI: 10.1055/s-0042-120902
Update
Georg Thieme Verlag KG Stuttgart · New York

Bergab- und Bergaufgehen

Nathalie Alexander
,
Hermann Schwameder
Further Information

Publication History

Publication Date:
10 February 2017 (online)

Zusammenfassung

EINFLUSS DER GELÄNDENEIGUNG AUF GELENKE UND MUSKULATUR DER UNTEREN EXTREMITÄT Wandern im steilen Gelände kann zu Schmerzen in den Knien führen, da diese Gelenke hohen Belastungen ausgesetzt sind. Doch wie stehen diese Belastungen in Zusammenhang mit den auftretenden Muskelkräften und welche Empfehlungen kann man den Betroffenen geben? Diese Fragen beantwortet eine Studie, in der die Effekte vom Bergab- und Bergaufgehen bei verschiedenen Neigungen auf Gelenk- und Muskelkräfte analysiert wurden.

 
  • Literatur

  • 1 Bässler R. Freizeitsport in Österreich. Wien 1997; 0
  • 2 Jahnke A, Mende JK, Maier GS. et al. Sports activities before and after medial unicompartmental knee arthroplasty using the new Heidelberg Sports Activity Score. Int Orthop 2015; 39: 449-454
  • 3 Walker T, Gotterbarm T, Bruckner T. et al. Return to sports, recreational activity and patient-reported outcomes after lateral unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2015; 23: 3281-3287
  • 4 LaCroix AZ, Leveille SG, Hecht JA. et al. Does walking decrease the risk of cardiovascular disease hospitalizations and death in older adults?. J Am Geriatr Soc 1996; 44: 113-120
  • 5 Rodio A, Fattorini L. Downhill walking to improve lower limb strength in healthy young adults. Eur J Sport Sci 2014; 14: 806-812
  • 6 Blake RL, Ferguson HJ. Walking and hiking injuries. A one year follow-up study. J Am Podiatr Med Assoc 1993; 83: 499-503
  • 7 Kuster M, Sakurai S, Wood GA. Kinematic and kinetic comparison of downhill and level walking. Clin Biomech 1995; 10: 79-84
  • 8 Lange GW, Hintermeister RA, Schlegel T. et al. Electromyographic and kinematic analysis of graded treadmill walking and the implications for knee rehabilitation. J Orthop Sports Phys Ther 1996; 23: 294-301
  • 9 Lay AN, Hass CJ, Gregor RJ. The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. J Biomech 2006; 39: 1621-1628
  • 10 Schwameder H, Lindenhofer E, Müller E. Effect of walking speed on lower extremity joint loading in graded ramp walking. Sports Biomech 2005; 4: 227-243
  • 11 McIntosh AS, Beatty KT, Dwan LN. et al. Gait dynamics on an inclined walkway. J Biomech 2006; 39: 2491-2502
  • 12 Haight DJ, Lerner ZF, Board WJ. et al. A comparison of slow, uphill and fast, level walking on lower extremity biomechanics and tibiofemoral joint loading in obese and nonobese adults. J Orthop Res 2014; 32: 324-330
  • 13 Steele KM, Demers MS, Schwartz MH. et al. Compressive tibiofemoral force during crouch gait. Gait & Posture 2012; 35: 556-560
  • 14 Erdemir A, McLean S, Herzog W. et al. Model-based estimation of muscle forces exerted during movements. Clin Biomech 20017 22: 131-154
  • 15 Gardinier ES, Manal K, Buchanan TS. et al. Altered loading in the injured knee after ACL rupture. J Orthop Res 2013; 31: 458-464
  • 16 Sanford BA, Williams JL, Zucker-Levin AR. et al. Tibiofemoral joint forces during the stance phase of gait after ACL reconstruction. Open J Biophys 2013; 03: 277-284
  • 17 Kuster M, Wood GA, Sakurai S. et al. Downhill walking: a stressful task for the anterior cruciate ligament? A biomechanical study with clinical implications. Knee Surg Sports Traumatol Arthrosc 1994; 2: 2-7
  • 18 Correa TA, Crossley KM, Kim HJ. et al. Contributions of individual muscles to hip joint contact force in normal walking. J Biomech 2010; 43: 1618-1622
  • 19 DeMers MS, Pal S, Delp SL. Changes in tibiofemoral forces due to variations in muscle activity during walking. J Orthop Res 2014; 32: 769-776
  • 20 Valente G, Taddei F, Jonkers I. Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis. J Biomech 2013; 46: 2186-2193
  • 21 Shelburne KB, Torry MR, Pandy MG. Muscle, ligament, and joint-contact forces at the knee during walking. Med Sci Sports Exerc 2005; 37: 1948-1956
  • 22 Besier TF, Fredericson M, Gold GE. et al. Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J Biomech 2009; 42: 898-905
  • 23 Dorn TW, Wang JM, Hicks JL. et al. Predictive simulation generates human adaptations during loaded and inclined walking. PLoS One 2015; 10: e0121407
  • 24 Alexander N, Schwameder H. Comparison of estimated and measured muscle activity during inclined walking. J Appl Biomech 2016; 32: 150-159
  • 25 Sritharan P, Lin YC, Pandy MG. Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait. J Orthop Res 2012; 30: 1586-1595
  • 26 Worsley P, Stokes M, Taylor M. Predicted knee kinematics and kinetics during functional activities using motion capture and musculoskeletal modelling in healthy older people. Gait & Posture 2011; 33: 268-273
  • 27 Trepczynski A, Kutzner I, Kornaropoulos E. et al. Patellofemoral joint contact forces during activities with high knee flexion. J Orthop Res 2012; 30: 408-415
  • 28 Bergmann G, Deuretzbacher G, Heller M. et al. Hip contact forces and gait patterns from routine activities. J Biomech 2001; 34: 859-871
  • 29 Kutzner I, Heinlein B, Graichen F. et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 2010; 43: 2164-2173
  • 30 Schwameder H. Biomechanische Belastungsanalysen beim Berggehen. Aachen: Meyer & Meyer; 2004
  • 31 Mason JJ, Leszko F, Johnson T. et al. Patellofemoral joint forces. J Biomech 2008; 41: 2337-2348
  • 32 Alexander N, Schwameder H. Lower limb joint and muscle forces during sloped walking at self-selected speed, in: ISBS. Tsukuba, Japan: International Society of Biomechanics in Sports; 2016
  • 33 Lay AN, Hass CJ, Richard Nichols T. et al. The effects of sloped surfaces on locomotion: an electromyographic analysis. J Biomech 2007; 40: 1276-1285