Planta Med 2016; 82(14): 1274-1278
DOI: 10.1055/s-0042-110656
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Flavonoids from Cyclopia genistoides and Their Xanthine Oxidase Inhibitory Activity

Orsolya Roza
1   Department of Pharmacognosy, University of Szeged, Szeged, Hungary
,
Ana Martins
1   Department of Pharmacognosy, University of Szeged, Szeged, Hungary
,
Judit Hohmann
1   Department of Pharmacognosy, University of Szeged, Szeged, Hungary
2   Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
,
Wan-Chun Lai
3   Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
,
Jacobus Eloff
4   Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
,
Fang-Rong Chang
3   Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
,
Dezső Csupor
1   Department of Pharmacognosy, University of Szeged, Szeged, Hungary
2   Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
› Author Affiliations
Further Information

Publication History

received 15 April 2016
revised 09 June 2016

accepted 11 June 2016

Publication Date:
08 July 2016 (online)

Abstract

The present paper reports the chemical analysis of the methanolic extracts of fermented and non-fermented Cyclopia genistoides herbs and an investigation of the xanthine oxidase inhibitory activity of the isolated constituents. Chemical analysis of the leaves and stems of C. genistoides yielded the isolation and identification of two benzophenone glucosides, iriflophenone 2-O-β-glucopyranoside (1) and iriflophenone 3-C-β-glucopyranoside (2), two pterocarpans, (6aR,11aR)-(−)-2-methoxymaackiain (5) and (6aR,11aR)-(−)-maackiain (6), along with the flavanones liquiritigenin (9) and hesperetin (10), the flavone diosmetin (11), the isoflavones afrormosin (7) and formononetin (8), piceol (3), and 4-hydroxybenzaldehid (4). Among the eleven compounds, nine are reported for the first time from this species, and six from the genus Cyclopia. These compounds, together with previously isolated secondary metabolites of this species, were tested for xanthine oxidase inhibitory activity. The 5,7-dihydroxyflavones luteolin and diosmetin significantly inhibited the enzyme in vitro, while hesperetin (10) and 5,7,3′,5′-tetrahydroxyflavone exerted weak activity.

Supporting Information

 
  • References

  • 1 Joubert E, Gelderblom WC, Louw A, de Beer D. South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides – a review. J Ethnopharmacol 2008; 119: 376-412
  • 2 Louw A, Joubert E, Visser K. Phytoestrogenic potential of Cyclopia extracts and polyphenols. Planta Med 2013; 79: 580-590
  • 3 Joubert E, Joubert ME, Bester C, de Beer D, de Lange JH. Honeybush (Cyclopia ssp.): From local cottage industry to global markets – The catalytic and supporting role of research. S Afr J Bot 2011; 77: 887-907
  • 4 Van Wyk BE. A broad review of commercially important southern African medicinal plants. J Ethnopharmacol 2008; 119: 342-355
  • 5 Verhoog NJ, Joubert E, Louw A. Screening of four Cyclopia (honeybush) species for putative phyto-oestrogenic activity by oestrogen receptor binding assays. S Afr J Sci 2007; 103: 13-21
  • 6 Kamara BI, Brandt EV, Ferreira D, Joubert E. Polyphenols from Honeybush tea (Cyclopia intermedia). J Agric Food Chem 2003; 51: 3874-3879
  • 7 Kamara BI, Brand DJ, Brandt EV, Joubert E. Phenolic metabolites from honeybush tea (Cyclopia subternata). J Agric Food Chem 2004; 52: 5391-5395
  • 8 Joubert E, Richards ES, Merwe JD, De Beer D, Manley M, Gelderblom WC. Effect of species variation and processing on phenolic composition and in vitro antioxidant activity of aqueous extracts of Cyclopia spp. (Honeybush Tea). J Agric Food Chem 2008; 56: 954-963
  • 9 Beelders T, de Beer D, Stander MA, Joubert E. Comprehensive phenolic profiling of Cyclopia genistoides (L.) Vent. by LC-DAD-MS and -MS/MS reveals novel xanthone and benzophenone constituents. Molecules 2014; 19: 11760-11790
  • 10 Marnewick JL, Batenburg W, Swart P, Joubert E, Swanevelder S, Gelderblom WC. Ex vivo modulation of chemical-induced mutagenesis by subcellular liver fractions of rats treated with rooibos (Aspalathus linearis) tea, honeybush (Cyclopia intermedia) tea, as well as green and black (Camellia sinensis) teas. Mutat Res 2004; 558: 145-154
  • 11 Marnewick JL, van der Westhuizen FH, Joubert E, Swanevelder S, Swart P, Gelderblom WC. Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver. Food Chem Toxicol 2009; 47: 220-229
  • 12 Chellan N, Joubert E, Strijdom H, Roux C, Louw J, Muller CJ. Aqueous extract of unfermented honeybush (Cyclopia maculata) attenuates STZ-induced diabetes and beta-cell cytotoxicity. Planta Med 2014; 80: 622-629
  • 13 Roddy E, Doherty M. Epidemiology of gout. Arthritis Res Ther 2010; 12: 223
  • 14 Stamp LK, Chapman PT. Urate-lowering therapy: current options and future prospects for elderly patients with gout. Drugs Aging 2014; 31: 777-786
  • 15 Lee SS, Tseng CC, Chen CK. Three new benzophenone glucosides from the leaves of Planchonella obovata . Helv Chim Acta 2010; 93: 522-529
  • 16 Kokotkiewicz A, Luczkiewicz M, Sowinski P, Glod D, Gorynski K, Bucinski A. Isolation and structure elucidation of phenolic compounds from Cyclopia subternata Vogel (honeybush) intact plant and in vitro cultures. Food Chem 2012; 133: 1373-1382
  • 17 Sato S, Takeo J, Aoyama C, Kawahara H. Na+-Glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens . Bioorg Med Chem 2007; 15: 3445-3449
  • 18 Máximo P, Lourenço A. A pterocarpan from Ulex parviflorus . Phytochemistry 1998; 48: 359-362
  • 19 Mizuno M, Tanaka T, Tamura KI, Matsuura N, Iinuma M, Phengklai C. Flavonoids in the roots of Euchresta horsfieldii in Thailand. Phytochemistry 1990; 29: 2663-2665
  • 20 Máximo P, Lourenço A, Feio SS, Roseiro JC. Flavonoids from Ulex airensis and Ulex europaeus ssp. europaeus . J Nat Prod 2002; 65: 175-178
  • 21 Máximo P, Lourenço A, Feio SS, Roseiro JC. Flavonoids from Ulex Species. Z Naturforsch C 2000; 55: 506-510
  • 22 Máximo P, Lourenço A, Feio SS, Roseiro JC. A new prenylisoflavone from Ulex jussiaei . Z Naturforsch C 2002; 57: 609-613
  • 23 Alguhas honeybush tea. Fermentation process. Available at. http://www.agulhashoneybushtea.co.za/art-tea/ Accessed 10 March, 2016
  • 24 Hunyadi A, Martins A, Danko B, Chuang DW, Trouillas P, Chang FR, Wu YC, Falkay G. Discovery of the first non-planar flavonoid that can strongly inhibit xanthine oxidase: protoapigenone 1′-O-propargyl ether. Tetrahedron Lett 2013; 54: 6529-6532
  • 25 Sigma-Aldrich. Protocol of inhibition of xanthine oxidase by Sigma-Aldrich. Available at. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/General_Information/xanthine_oxidase.pdf Accessed 10 March, 2016
  • 26 Severi JA, Lima ZP, Kushima H, Brito AR, Santos LC, Vilegas W, Hiruma-Lima CA. Polyphenols with antiulcerogenic action from aqueous decoction of mango leaves (Mangifera indica L.). Molecules 2009; 14: 1098-1110
  • 27 Correia-da-Silva M, Sousa E, Duarte B, Marques F, Carvalho F, Cunha-Ribeiro LM, Pinto MMM. Flavonoids with an oligopolysulfated moiety: a new class of anticoagulant agents. J Med Chem 2011; 54: 95-106
  • 28 Puebla P, Oshima-Franco Y, Franco LM, Santos MG, Silva RV, Rubem-Mauro L, Feliciano AS. Chemical constituents of the bark of Dipteryx alata Vogel, an active species against Bothrops jararacussu venom. Molecules 2010; 15: 8193-8204
  • 29 Nessa F, Ismail Z, Mohamed N, Haris MRHM. Free radical-scavenging activity of organic extracts and of pure flavonoids of Blumea balsamifera DC leaves. Food Chem 2004; 88: 243-252