Planta Med 2016; 82(18): 1525-1531
DOI: 10.1055/s-0042-110495
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Saponins from Saponaria officinalis L. Augment the Efficacy of a Rituximab-Immunotoxin

Roger Gilabert-Oriol
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
3   Present address: Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
,
Mayank Thakur
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
,
Katy Haussmann
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
,
Nicole Niesler
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
,
Cheenu Bhargava
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
,
Cornelia Görick
2   Institut für Pharmazie, Freie Universität Berlin, Berlin, Germany
,
Hendrik Fuchs
1   Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
,
Alexander Weng
2   Institut für Pharmazie, Freie Universität Berlin, Berlin, Germany
› Author Affiliations
Further Information

Publication History

received 18 March 2016
revised 01 June 2016

accepted 08 June 2016

Publication Date:
08 July 2016 (online)

Abstract

Triterpenoidal saponins are synthesized in the roots of Saponaria officinalis L. The same plant is also a source for the toxin Saporin, which is a ribosome-inactivating protein. Triterpenoidal saponins are known to increase the cytotoxicity of Saporin by modulating its intracellular trafficking. Here, we investigated if the combinatorial effects elicited by purified saponins and Saporin can be applied to increase the therapeutic efficacy of the immunotoxin Saporin-Rituximab. First, saponins were purified by high-performance liquid chromatography. Thereafter, their intrinsic cytotoxicity was evaluated on Ramos cells with no observed effect up to 5 µg/mL, however, saponins increased the cytotoxicity of Saporin, while no influence was observed on its N-glycosidase activity. Saporin-Rituximab bound to CD20 in Ramos cells and, in the absence of saponins, had a GI50 (concentration inhibiting cell growth to 50 %) of 7 nM. However, in the presence of a nontoxic concentration of saponins, the GI50 of Saporin-Rituximab was 0.01 nM, a nearly 700-fold increase in efficacy. Moreover, two further immunotoxins, namely Saporin-anti-CD22 and Saporin-anti-CD25, were tested in combination with saponins yielding enhancement factors of 170-fold and 25-fold, respectively. All three receptors are present in Ramos cells and the differences in cytotoxicity enhancement may be explained by the differing expression levels of the cellular receptors. The application of purified saponins from S. officinalis L. is therefore a new strategy to potentially improve the cytotoxicity and therapeutic efficacy of Rituximab-immunotoxins for the treatment of B-cell lymphoma.

 
  • References

  • 1 Vincken JP, Heng L, de Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 2007; 68: 275-297
  • 2 Francis G, Kerem Z, Makkar HP, Becker K. The biological action of saponins in animal systems: a review. Bri J Nutr 2002; 88: 587-605
  • 3 Böttger S, Melzig MF. Triterpenoid saponins of the Caryophyllaceae and Illecebraceae family. Phytochem Lett 2011; 4: 59-68
  • 4 Gilabert-Oriol R, Mergel K, Thakur M, von Mallinckrodt B, Melzig MF, Fuchs H, Weng A. Real-time analysis of membrane permeabilizing effects of oleanane saponins. Bioorg Med Chem 2013; 21: 2387-2395
  • 5 Weng A, Thakur M, von Mallinckrodt B, Beceren-Braun F, Gilabert-Oriol R, Wiesner B, Eichhorst J, Bottger S, Melzig MF, Fuchs H. Saponins modulate the intracellular trafficking of protein toxins. J Control Release 2012; 164: 74-86
  • 6 Moniuszko-Szajwaj B, Masullo M, Kowalczyk M, Pecio Ł, Szumacher-Strabel M, Cieślak A, Piacente S, Oleszek W, Stochmal A. Highly polar triterpenoid saponins from the roots of Saponaria officinalis L. Helv Chim Acta 2016; 99: 347-354
  • 7 Polito L, Bortolotti M, Mercatelli D, Battelli MG, Bolognesi A. Saporin-S6: a useful tool in cancer therapy. Toxins 2013; 5: 1698-1722
  • 8 Thakur M, Weng A, Pieper A, Mergel K, von Mallinckrodt B, Gilabert-Oriol R, Gorick C, Wiesner B, Eichhorst J, Melzig MF, Fuchs H. Macromolecular interactions of triterpenoids and targeted toxins: role of saponins charge. Int J Biol Macromol 2013; 61: 285-294
  • 9 Gilabert-Oriol R, Thakur M, von Mallinckrodt B, Bhargava C, Wiesner B, Eichhorst J, Melzig MF, Fuchs H, Weng A. Reporter assay for endo/lysosomal escape of toxin-based therapeutics. Toxins 2014; 6: 1644-1666
  • 10 Gilabert-Oriol R, Thakur M, von Mallinckrodt B, Hug T, Wiesner B, Eichhorst J, Melzig MF, Fuchs H, Weng A. Modified trastuzumab and cetuximab mediate efficient toxin delivery while retaining antibody-dependent cell-mediated cytotoxicity in target cells. Mol Pharm 2013; 10: 4347-4357
  • 11 Gilabert-Oriol R, Weng A, Mallinckrodt B, Melzig MF, Fuchs H, Thakur M. Immunotoxins constructed with ribosome-inactivating proteins and their enhancers: a lethal cocktail with tumor specific efficacy. Curr Pharm Des 2014; 20: 6584-6643
  • 12 Thakur M, Mergel K, Weng A, Frech S, Gilabert-Oriol R, Bachran D, Melzig MF, Fuchs H. Real time monitoring of the cell viability during treatment with tumor-targeted toxins and saponins using impedance measurement. Biosens Bioelectron 2012; 35: 503-506
  • 13 Baer Ii WH, Maini A, Jacobs I. Barriers to the access and use of rituximab in patients with non-Hodgkinʼs lymphoma and chronic lymphocytic leukemia: a physician survey. Pharmaceuticals (Basel) 2014; 7: 530-544
  • 14 Ghetie MA, Bright H, Vitetta ES. Homodimers but not monomers of rituxan (chimeric anti-CD20) induce apoptosis in human B-lymphoma cells and synergize with a chemotherapeutic agent and an immunotoxin. Blood 2001; 97: 1392-1398
  • 15 Guclu-Ustundag O, Mazza G. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 2007; 47: 231-258
  • 16 Weng A, Thakur M, Beceren-Braun F, Bachran D, Bachran C, Riese SB, Jenett-Siems K, Gilabert-Oriol R, Melzig MF, Fuchs H. The toxin component of targeted anti-tumor toxins determines their efficacy increase by saponins. Mol Oncol 2012; 6: 323-332
  • 17 Wayne AS, Fitzgerald DJ, Kreitman RJ, Pastan I. Immunotoxins for leukemia. Blood 2014; 123: 2470-2477
  • 18 Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant 2006; 6: 859-866
  • 19 Dotan E, Aggarwal C, Smith MR. Impact of rituximab (rituxan) on the treatment of B-cell non-Hodgkinʼs lymphoma. P T 2010; 35: 148-157
  • 20 Amoroso A, Hafsi S, Militello L, Russo AE, Soua Z, Mazzarino MC, Stivala F, Libra M. Understanding rituximab function and resistance: implications for tailored therapy. Front Biosci (Landmark Ed) 2011; 16: 770-782
  • 21 Riaz W, Hernandez-Ilizaliturri FJ, Czuczman MS. Strategies to enhance rituximab anti-tumor activity in the treatment of CD20-positive B-cell neoplasms. Immunol Res 2010; 46: 192-205
  • 22 Polito L, Bolognesi A, Tazzari PL, Farini V, Lubelli C, Zinzani PL, Ricci F, Stirpe F. The conjugate rituximab/saporin-S6 completely inhibits clonogenic growth of CD20-expressing cells and produces a synergistic toxic effect with Fludarabine. Leukemia 2004; 18: 1215-1222
  • 23 Holmes SE, Bachran C, Fuchs H, Weng A, Melzig MF, Flavell SU, Flavell DJ. Triterpenoid saponin augmention of saporin-based immunotoxin cytotoxicity for human leukaemia and lymphoma cells is partially immunospecific and target molecule dependent. Immunopharmacol Immunotoxicol 2015; 37: 42-55
  • 24 Drexler HG. Guide to Leukemia-Lymphoma Cells Lines. 2nd. Edition. Braunschweig, Germany: DSMZ; 2010
  • 25 Walshe CA, Beers SA, French RR, Chan CH, Johnson PW, Packham GK, Glennie MJ, Cragg MS. Induction of cytosolic calcium flux by CD20 is dependent upon B Cell antigen receptor signaling. J Biol Chem 2008; 283: 16971-16984
  • 26 James SE, Greenberg PD, Jensen MC, Lin Y, Wang J, Till BG, Raubitschek AA, Forman SJ, Press OW. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J Immunol 2008; 180: 7028-7038
  • 27 Tembhare PR, Marti G, Wiestner A, Degheidy H, Farooqui M, Kreitman RJ, Jasper GA, Yuan CM, Liewehr D, Venzon D, Stetler-Stevenson M. Quantification of expression of antigens targeted by antibody-based therapy in chronic lymphocytic leukemia. Am J Clin Pathol 2013; 140: 813-818
  • 28 Du X, Beers R, Fitzgerald DJ, Pastan I. Differential cellular internalization of anti-CD19 and -CD22 immunotoxins results in different cytotoxic activity. Cancer Res 2008; 68: 6300-6305
  • 29 Weng A, Jenett-Siems K, Schmieder P, Bachran D, Bachran C, Gorick C, Thakur M, Fuchs H, Melzig MF. A convenient method for saponin isolation in tumour therapy. J Chromatogr B Analyt Technol I Biomed Life Sci 2010; 878: 713-718
  • 30 Heisler I, Keller J, Tauber R, Sutherland M, Fuchs H. A cleavable adapter to reduce nonspecific cytotoxicity of recombinant immunotoxins. Int J Cancer 2003; 103: 277-282
  • 31 Gilabert-Oriol R, Thakur M, Weise C, Dernedde J, von Mallinckrodt B, Fuchs H, Weng A. Small structural differences of targeted anti-tumor toxins result in strong variation of protein expression. Protein Expr Purif 2013; 91: 54-60