Neuroradiologie Scan 2016; 06(03): 239-250
DOI: 10.1055/s-0042-109939
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Intraoperative Magnetresonanztomografie in der Gliomchirurgie – Wo stehen wir heute?[1]

Christian Senft
,
Volker Seifert
Further Information

Publication History

Publication Date:
01 August 2016 (online)

Zusammenfassung

Die weitestgehende Resektion eines Glioms geht für die betroffenen Patienten mit einer verbesserten Prognose im Hinblick auf die Überlebensdauer einher. Das neurochirurgische Ziel der Gliomtherapie ist daher die weitestmögliche Entfernung eines kernspintomografisch erkennbaren Tumors unter Schonung funktionell relevanten Gewebes. Inwieweit die Resektionsradikalität in der Gliomchirurgie durch Einsatz der intraoperativen MRT gesteigert und präzisiert werden kann, ist Gegenstand dieses Artikels.

1 Dieser Artikel ist ein adaptierter Zweitabdruck des im Heft 1/2015 erschienenen Artikels „Intraoperative Magnetresonanztomografie in der Gliomchirurgie – Wo stehen wir heute?“ aus Neurochirurgie Scan


 
  • Literatur

  • 1 Curran Jr WJ, Scott CB, Horton J et al. Does extent of surgery influence outcome for astrocytoma with atypical or anaplastic foci (AAF)? A report from three Radiation Therapy Oncology Group (RTOG) trials. J Neurooncol 1992; 12: 219-227
  • 2 Tortosa A, Vinolas N, Villa S et al. Prognostic implication of clinical, radiologic, and pathologic features in patients with anaplastic gliomas. Cancer 2003; 97: 1063-1071
  • 3 Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery 2008; 62: 753-764 ; discussion 264–756
  • 4 McGirt MJ, Chaichana KL, Gathinji M et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 2009; 110: 156-162
  • 5 Sahm F, Capper D, Jeibmann A et al. Addressing diffuse glioma as a systemic brain disease with singe-cell analysis. Arch Neurol 2012; 69: 523-526
  • 6 Lacroix M, Abi-Said D, Fourney DR et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001; 95: 190-198
  • 7 Pichlmeier U, Bink A, Schackert G et al. Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol 2008; 10: 1025-1034
  • 8 Kreth FW, Thon N, Simon M et al. Gross total but not incomplete resection of glioblastoma prolongs survival in the era of radiochemotherapy. Ann Oncol 2013; 24: 3117-3123
  • 9 Glas M, Rath BH, Simon M et al. Residual tumor cells are unique cellular targets in glioblastoma. Ann Neurol 2010; 68: 264-269
  • 10 Laws ER, Parney IF, Huang W et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg 2003; 99: 467-473
  • 11 Berger MS, Ojemann GA, Lettich E. Neurophysiological monitoring during astrocytoma surgery. Neurosurg Clin N Am 1990; 1: 65-80
  • 12 Wirtz CR, Albert FK, Schwaderer M et al. The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res 2000; 22: 354-360
  • 13 Roberts DW, Hartov A, Kennedy FE et al. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 1998; 43: 749-758 ; discussion 758–760
  • 14 Albert FK, Forsting M, Sartor K et al. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 1994; 34: 45-60 ; discussion 60–41
  • 15 Ram Z, Hadani M. Intraoperative imaging – MRI. Acta Neurochir 2003; 88 : 1-4
  • 16 Nimsky C, Ganslandt O, Buchfelder M et al. Glioma surgery evaluated by intraoperative low-field magnetic resonance imaging. Acta Neurochir 2003; 85 : 55-63
  • 17 Rygh OM, Selbekk T, Torp SH et al. Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection. Acta Neurochir (Wien) 2008; 150: 1031-1044
  • 18 Erdogan N, Tucer B, Mavili E et al. Ultrasound guidance in intracranial tumor resection: correlation with postoperative magnetic resonance findings. Acta Radiol 2005; 46: 743-749
  • 19 Prada F, Perin A, Martegani A et al. Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 2014; 74: 542-552 ; discussion 552
  • 20 Black PM, Moriarty T, Alexander 3rd E et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 1997; 41: 831-842 ; discussion 842–835
  • 21 Black PM, Alexander 3rd E, Martin C et al. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 1999; 45: 423-431 ; discussion 431–423
  • 22 Muragaki Y, Iseki H, Maruyama T et al. Usefulness of intraoperative magnetic resonance imaging for glioma surgery. Acta Neurochir 2006; 98 : 67-75
  • 23 Pamir MN, Peker S, Ozek MM et al. Intraoperative MR imaging: preliminary results with 3 tesla MR system. Acta Neurochir 2006; 98: 97-100
  • 24 Jha AN, Rahmathulla G, Vaishya S et al. Intraoperative high field magnetic resonance imaging in neurosurgery: Our initial experience with the brain suite. Neurol India 2007; 55: 169-172
  • 25 Senft C, Seifert V, Hermann E et al. Usefulness of intraoperative ultralow-field magnetic resonance imaging in glioma surgery. Neurosurgery 2008; 63: 257-266 ; discussion 266–257
  • 26 Leuthardt EC, Lim CC, Shah MN et al. Use of movable high-field-strength intraoperative magnetic resonance imaging with awake craniotomies for resection of gliomas: preliminary experience. Neurosurgery 2011; 69: 194-206
  • 27 Hadani M, Spiegelman R, Feldman Z et al. Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 2001; 48: 799-807 ; discussion 807–799
  • 28 Schulder M, Sernas TJ, Carmel PW. Cranial surgery and navigation with a compact intraoperative MRI system. Acta Neurochir 2003; 85: 79-86
  • 29 Schulder M, Salas S, Brimacombe M et al. Cranial surgery with an expanded compact intraoperative magnetic resonance imager. Technical note. J Neurosurg 2006; 104: 611-617
  • 30 Nimsky C, Ganslandt O, von Keller B et al. Preliminary experience in glioma surgery with intraoperative high-field MRI. Acta Neurochir 2003; 88: 21-29
  • 31 Sutherland GR, Kaibara T, Louw D et al. A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 1999; 91: 804-813
  • 32 Prabhu SS, Gasco J, Tummala S et al. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article. J Neurosurg 2011; 114: 719-726
  • 33 Nimsky C. Intraoperative acquisition of fMRI and DTI. Neurosurg Clin N Am 2011; 22: 269-277
  • 34 Roder C, Bender B, Ritz R et al. Intraoperative visualization of residual tumor: the role of perfusion-weighted imaging in a high-field intraoperative magnetic resonance scanner. Neurosurgery 2013; Operative 72 : ons151-158 ; discussion ons158
  • 35 Pamir MN, Ozduman K, Yildiz E et al. Intraoperative magnetic resonance spectroscopy for identification of residual tumor during low-grade glioma surgery. J Neurosurg 2013; 118: 1191-1198
  • 36 Choudhri AF, Chin EM, Klimo P et al. Spatial distortion due to field inhomogeneity in 3.0 tesla intraoperative MRI. Neuroradiol J 2014; 27: 387-392
  • 37 Nimsky C, Ganslandt O, Tomandl B et al. Low-field magnetic resonance imaging for intraoperative use in neurosurgery: a 5-year experience. Eur Radiol 2002; 12: 2690-2703
  • 38 Knauth M, Wirtz CR, Tronnier VM et al. Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 1999; 20: 1642-1646
  • 39 Wirtz CR, Bonsanto MM, Knauth M et al. Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg 1997; 2: 172-179
  • 40 Hirschberg H, Samset E, Hol PK et al. Impact of intraoperative MRI on the surgical results for high-grade gliomas. Minim Invasive Neurosurg 2005; 48: 77-84
  • 41 Bohinski RJ, Kokkino AK, Warnick RE et al. Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 2001; 48: 731-742 ; discussion 742–734
  • 42 Wirtz CR, Knauth M, Staubert A et al. Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 2000; 46: 1112-1120 ; discussion 1120–1122
  • 43 Schneider JP, Trantakis C, Rubach M et al. Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme – a quantitative radiological analysis. Neuroradiology 2005; 47: 489-500
  • 44 Maesawa S, Fujii M, Nakahara N et al. Clinical indications for high-field 1.5 T intraoperative magnetic resonance imaging and neuro-navigation for neurosurgical procedures. Review of initial 100 cases. Neurol Med Chir (Tokyo) 2009; 49: 340-349 ; discussion 349–350
  • 45 Oh DS, Black PM. A low-field intraoperative MRI system for glioma surgery: Is it worthwhile?. Neurosurg Clin N Am 2005; 16: 135-141
  • 46 Kuhnt D, Ganslandt O, Schlaffer SM et al. Quantification of glioma removal by intraoperative high-field magnetic resonance imaging: an update. Neurosurgery 2011; 69: 852-862 ; discussion 862–853
  • 47 Hall WA, Liu H, Maxwell RE et al. Influence of 1.5-Tesla intraoperative MR imaging on surgical decision making. Acta Neurochir 2003; 85 : 29-37
  • 48 Seifert V, Senft C. Utilization of low-field intraoperative MRI in glioma surgery – an overview. In: Hall W, Nimsky C, Truwit C, , eds. Intraoperative MRI-guided neurosurgery. Stuttgart: Thieme; 2011: 99-107
  • 49 Hall WA, Liu H, Martin AJ et al. Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery 2000; 46: 632-641 ; discussion 641–632
  • 50 Hatiboglu MA, Weinberg JS, Suki D et al. Utilization of intraoperative motor mapping in glioma surgery with high-field intraoperative magnetic resonance imaging. Stereotact Funct Neurosurg 2010; 88: 345-352
  • 51 Senft C, Forster MT, Bink A et al. Optimizing the extent of resection in eloquently located gliomas by combining intraoperative MRI guidance with intraoperative neurophysiological monitoring. J Neuro-Oncol 2012; 109: 81-90
  • 52 Weingarten DM, Asthagiri AR, Butman JA et al. Cortical mapping and frameless stereotactic navigation in the high-field intraoperative magnetic resonance imaging suite. J Neurosurg 2009; 111: 1185-1190
  • 53 Parney IF, Goerss SJ, McGee K et al. Awake craniotomy, electrophysiologic mapping, and tumor resection with high-field intraoperative MRI. World Neurosurg 2010; 73: 547-551
  • 54 Schulder M, Azmi H, Biswal B. Functional magnetic resonance imaging in a low-field intraoperative scanner. Stereotact Funct Neurosurg 2003; 80: 125-131
  • 55 Nimsky C, Ganslandt O, Hastreiter P et al. Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 2007; 61: 178-185 ; discussion 186
  • 56 Ozawa N, Muragaki Y, Nakamura R et al. Intraoperative diffusion-weighted imaging for visualization of the pyramidal tracts. Part II: Clinical study of usefulness and efficacy. Minim Invasive Neurosurg 2008; 51: 67-71
  • 57 Nabavi A, Goebel S, Doerner L et al. Awake craniotomy and intraoperative magnetic resonance imaging: patient selection, preparation, and technique. Top Magn Reson Imaging 2009; 19: 191-196
  • 58 Peruzzi P, Puente E, Bergese S et al. Intraoperative MRI (ioMRI) in the setting of awake craniotomies for supratentorial glioma resection. Acta Neurochir Suppl 2011; 109: 43-48
  • 59 Tuominen J, Yrjana S, Ukkonen A et al. Awake craniotomy may further improve neurological outcome of intraoperative MRI-guided brain tumor surgery. Acta Neurochir 2013; 155: 1805-1812
  • 60 Zimmermann M, Seifert V, Trantakis C et al. Open MRI-guided microsurgery of intracranial tumours. Preliminary experience using a vertical open MRI-scanner. Acta Neurochir (Wien) 2000; 142: 177-186
  • 61 Senft C, Franz K, Blasel S et al. Influence of iMRI-guidance on the extent of resection and survival of patients with glioblastoma multiforme. Technol Cancer Res Treat 2010; 9: 339-346
  • 62 Kubben PL, ter Meulen KJ, Schijns OE et al. Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 2011; 12: 1062-1070
  • 63 Senft C, Bink A, Franz K et al. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 2011; 12: 997-1003
  • 64 Stummer W, Pichlmeier U, Meinel T et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 2006; 7: 392-401
  • 65 Nimsky C. Intraoperative MRI in glioma surgery: proof of benefit?. Lancet Oncol 2011; 12: 982-983
  • 66 Claus EB, Horlacher A, Hsu L et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 2005; 103: 1227-1233
  • 67 Kuhnt D, Becker A, Ganslandt O et al. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol 2011; 13: 1339-1348
  • 68 Roder C, Bisdas S, Ebner FH et al. Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: High-field iMRI versus conventional and 5-ALA-assisted surgery. Eur J Surg Oncol 2014; 40: 297-304
  • 69 Tsugu A, Ishizaka H, Mizokami Y et al. Impact of the combination of 5-aminolevulinic acid-induced fluorescence with intraoperative magnetic resonance imaging-guided surgery for glioma. World Neurosurg 2011; 76: 120-127
  • 70 Eyupoglu IY, Hore N, Savaskan NE et al. Improving the extent of malignant glioma resection by dual intraoperative visualization approach. PLoS One 2012; 7: e44885
  • 71 Coburger J, Engelke J, Scheuerle A et al. Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Neurosurg Focus 2014; 36: E3
  • 72 Gessler F, Forster MT, Duetzmann S et al. Combination of intraoperative Magnetic Resonance Imaging and intraoperative Fluorescence to enhance the resection of contrast enhancing gliomas. Neurosurgery 2015; 77: 16-22 discussion 22. DOI: 10.1227/NEU.0000000000000729.