Planta Med 2016; 82(11/12): 1117-1121
DOI: 10.1055/s-0042-106972
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Cytotoxic Steroidal Glycosides from the Whole Plant of Calamus acanthophyllus [*]

Hunsa Prawat
1   Chulabhorn Research Institute, Bangkok, Thailand
,
Chulabhorn Mahidol
1   Chulabhorn Research Institute, Bangkok, Thailand
2   Chulabhorn Graduate Institute and Center of Excellence in Environmental Health and Toxicology (EHT), Bangkok, Thailand
,
Wirongrong Kaweetripob
1   Chulabhorn Research Institute, Bangkok, Thailand
,
Pakamas Intachote
1   Chulabhorn Research Institute, Bangkok, Thailand
,
Somchai Pisutjaroenpong
1   Chulabhorn Research Institute, Bangkok, Thailand
,
Somsak Ruchirawat
1   Chulabhorn Research Institute, Bangkok, Thailand
2   Chulabhorn Graduate Institute and Center of Excellence in Environmental Health and Toxicology (EHT), Bangkok, Thailand
› Author Affiliations
Further Information

Publication History

received 28 February 2016
revised 10 April 2016

accepted 11 April 2016

Publication Date:
24 May 2016 (online)

Abstract

A new steroidal glycoside, callaphylloside (1), together with seven known glycosides (28), was isolated from the whole plant of Calamus acanthophyllus. The structure of the new compound was elucidated by spectral data analyses and chemical transformations. Compounds 5 and 8 exhibited strong cytotoxic activity against four cancer cell lines (0.7 ≤ IC50 ≤ 3.4 µM). Evaluation of the structure-activity relationship among steroidal glycosides revealed that the structure of spirostanol with an α-L-rhamnopyranosyl linked to C-2 of the inner glucopyranosyl residue both play a critical role in the effects of these compounds on the cancer cell lines.

* This paper is dedicated to Professor Dr. Dr. h. c. mult. Kurt Hostettmann for his outstanding lifetime achievements.


Supporting Information

 
  • References

  • 1 Ohtsuki T, Sato M, Koyano T, Kowithayakorn T, Kawahara N, Goda Y, Ishibashi M. Steroidal saponins from Calamus insignis, and their cell growth and cell cycle inhibitory activities. Bioorg Med Chem 2006; 14: 659-665
  • 2 Wang SL, Cai B, Cui CB, Liu HW, Wu CF, Yao XS. Diosgenin-3-O-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranoside obtained as a new anticancer agent from Dioscorea futschauensis induces apoptosis on human colon carcinoma HCT-15 cells via mitochondria-controlled apoptotic pathway. J Asian Nat Prod Res 2004; 6: 115-125
  • 3 González AG, Hernández JC, León F, Padrón JI, Estévez F, Quintana J, Bermejo J. Steroidal saponins from the bark of Dracaena draco and their cytotoxic activities. J Nat Prod 2003; 66: 793-798
  • 4 Mimaki Y, Nakamura O, Sashida Y, Nikaido T, Ohmoto T. Steroidal saponins from the bulbs of Triteleia lactea and their inhibitory activity on cyclic AMP phosphodiesterase. Phytochemistry 1995; 38: 1279-1286
  • 5 Mimaki Y, Satou T, Kuroda M, Sashida Y, Hatakeyama Y. Steroidal saponins from the bulbs of Lilium candidum . Phytochemistry 1999; 51: 567-573
  • 6 Bhakuni DS, Joshi PP, Uprety H, Kapil RS. Roseoside – a C13 glycoside from Vinca rosea . Phytochemistry 1974; 13: 2541-2543
  • 7 Otsuka H, Yao M, Kamada K, Takeda Y. Alangionosides G–M: glycosides of megastigmane derivatives from the leaves of Alangium premnifolium . Chem Pharm Bull (Tokyo) 1995; 43: 754-759
  • 8 Prawat U, Tuntiwachwuttikul P, Taylor WC. Steroidal saponins of Costus lacerus . J Sci Soc Thailand 1989; 15: 139-147
  • 9 Watanabe Y, Sanada S, Ida Y, Shoji J. Comparative studies on the constituents of ophiopogonis tuber and its congeners. II. Studies on the constituents of the subterranean part of Ophiopogon planiscapus Nakai (1). Chem Pharm Bull 1983; 31: 3486-3495
  • 10 Chen S, Snyder JK. Diosgenin-bearing, molluscicidal saponins from Allium vineale: an NMR approach for the structural assignment of oligosaccharide units. J Org Chem 1989; 54: 3679-3689
  • 11 Hirai Y, Sanada S, Ida Y, Shoji J. Studies on the constituents of palmae plants. III. The constituents of Chamaerops humilis L. and Trachycarpus wagnerianus Becc. Chem Pharm Bull 1986; 34: 82-87
  • 12 Sun W, Tu G, Zhang Y. A new sterroidal saponin from Dioscorea zingiberensis Wright. Nat Prod Res 2003; 17: 287-292
  • 13 Bedir E, Khan IA. New steroidal glycosides from the fruits of Tribulus terrestris . J Nat Prod 2000; 63: 1699-1701
  • 14 Xu X, Wang J, Yang H, Huang WP, Yuang CJ. [Studies on saponin from seeds of Trigonella foenum-graecum (I) isolation and structural elucidation for a new saponin A and its secondary glucosides]. Zhongcaoyao 2003; 34: 678-682
  • 15 Munday SC, Wilkins AL, Miles CO, Holland PT. Isolation and structure elucidation of dichotomin, a furostanol saponin implicated in hepatogenous photosensitization of sheep grazing Panicum dichotomiflorum . J Agric Food Chem 1993; 41: 267-271
  • 16 Idaka K, Hirai Y, Shoji J. Studies on the constituents of palmae plants. IV. The constituents of the leaves of Sabal causiarum Becc. Chem Pharm Bull 1988; 36: 1783-1790
  • 17 Yin J, Kouda K, Tezuka Y, Tran QL, Miyahara T, Chen Y, Kadota S. Steroidal glycosides from the rhizomes of Dioscocea spongiosa . J Nat Prod 2003; 66: 646-650
  • 18 Hu K, Yao XS, Dong AJ, Kobayashi H, Iwasaki S, Jing YK. A new pregnane glycoside from Dioscorea collettii var. hypoglauca . J Nat Prod 1999; 62: 299-301
  • 19 Agrawal PK, Jain DC, Gupta RK, Thakur RS. Carbon-13 NMR spectroscopy of steroidal sapogenins and steroidal saponins. Phytochemistry 1985; 24: 2479-2496
  • 20 Kiyosawa S, Goto K, Owashi R, Kawasaki T. Glycosides of 20, 22-seco-furostane derivatives. Tetrahedron Lett 1977; 52: 4599-4602
  • 21 Sirisinha S, Tengchaisri T, Boonpucknavig S, Prempracha N, Ratanarapee S, Pausawasdi A. Establishment and characterization of a cholangiocarcinoma cell line from a Thai patient with intrahepatic bile duct cancer. Asian Pac J Allergy Immunol 1991; 9: 153-157
  • 22 Saotome K, Morita H, Umeda M. Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol In Vitro 1989; 3: 317-321