Planta Med 2016; 82(09/10): 754-760
DOI: 10.1055/s-0042-106391
Perspectives
Georg Thieme Verlag KG Stuttgart · New York

Marine Biodiscovery Goes Deeper: Using In Vivo Bioassays Based on Model Organisms to Identify Biomedically Relevant Marine Metabolites

Korbin H. J. West
1   Chemical Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
2   Department of Chemistry, Wabash College, Crawfordsville, Indiana, USA
,
Alexander D. Crawford
1   Chemical Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
› Author Affiliations
Further Information

Publication History

received 04 December 2015
revised 31 March 2016

accepted 04 April 2016

Publication Date:
18 May 2016 (online)

Abstract

Secondary metabolites from marine organisms are structurally diverse small molecules with high levels of bioactivity, and represent an underutilized resource for modern drug discovery. To facilitate the identification of drug-like marine metabolites, the significant potential of in vivo models of human disease – in particular those suitable for medium-throughput screening and bioassay-guided fractionation – should be explored in future marine biodiscovery efforts. Here, we explore the advantages of Caenorhabditis elegans, Drosophila, and zebrafish bioassays for marine biodiscovery, and review recent progress in using these in vivo models to identify bioactive marine metabolites.

 
  • References

  • 1 Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 2011; 17: 1217-1220
  • 2 Campbell WC. History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Curr Pharm Biotechnol 2012; 13: 853-865
  • 3 Crump A, Ōmura S. Ivermectin, ʼwonder drugʼ from Japan: the human use perspective. Proc Jpn Acad Ser B Phys Biol Sci 2011; 87: 13-28
  • 4 Williams JG. Dictyostelium finds new roles to model. Genetics 2010; 185: 717-726
  • 5 Annesley SJ, Chen S, Francione LM, Sanislav O, Chavan AJ, Farah C, de Piazza SW, Storey CL, Ilievska J, Fernando SG, Smith PK, Lay ST, Fisher PR. Dictyostelium, a microbial model for brain disease. Biochim Biophys Acta 2014; 1840: 1413-1432
  • 6 Harwig J, Scott PM. Brine shrimp (Artemia salina L.) larvae as a screening system for fungal toxins. Appl Microbiol 1971; 21: 1011-1016
  • 7 Kirchmaier S, Naruse K, Wittbrodt J, Loosli F. The genomic and genetic toolbox of the teleost medaka (Oryzias latipes). Genetics 2015; 199: 905-918
  • 8 Matsuzaki Y, Hosokai H, Mizuguchi Y, Fukamachi S, Shimizu A, Saya H. Establishment of HRAS(G12 V) transgenic medaka as a stable tumor model for in vivo screening of anticancer drugs. PLoS One 2013; 8: e54424
  • 9 Reichard M, Cellerino A, Valenzano DR. Turquoise killifish. Curr Biol 2015; 25: R741-R742
  • 10 Schmitt SM, Gull M, Brändli AW. Engineering Xenopus embryos for phenotypic drug discovery screening. Adv Drug Deliv Rev 2014; 69–70: 225-246
  • 11 Pratt KG, Khakhalin AS. Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets. Dis Model Mech 2013; 6: 1057-1065
  • 12 Tsukiyama-Kohara K, Kohara M. Tupaia belangeri as an experimental animal model for viral infection. Exp Anim 2014; 63: 367-374
  • 13 Ekblom R, Wolf JB. A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 2014; 7: 1026-1042
  • 14 Dow LE. Modeling disease in vivo with CRISPR/Cas9. Trends Mol Med 2015; 21: 609-621
  • 15 OʼReilly LP, Luke CJ, Perlmutter DH, Silverman GA, Pak SC. C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 2014; 69–70: 247-253
  • 16 Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA. C. elegans as a model organism to investigate molecular pathways involved with Parkinsonʼs disease. Dev Dyn 2010; 239: 1282-1295
  • 17 Anastassopoulou CG, Fuchs BB, Mylonakis E. Caenorhabditis elegans-based model systems for antifungal drug discovery. Curr Pharm Des 2011; 17: 1225-1233
  • 18 Kwok TC, Ricker N, Fraser R, Chan AW, Burns A, Stanley EF, McCourt P, Cutler SR, Roy PJ. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 2006; 441: 91-95
  • 19 Petrascheck M, Ye X, Buck LB. An antidepressant that extends lifespan in adult Caenorhabditis elegans . Nature 2007; 450: 553-556
  • 20 Petrascheck M, Ye X, Buck LB. A high-throughput screen for chemicals that increase the lifespan of Caenorhabditis elegans . Ann N Y Acad Sci 2009; 1170: 698-701
  • 21 Gosai SJ, Kwak JH, Luke CJ, Long OS, King DE, Kovatch KJ, Johnston PA, Shun TY, Lazo JS, Perlmutter DH, Silverman GA, Pak SC. Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin α1-antitrypsin Z. PLoS One 2010; 5: e15460
  • 22 Hwang H, Lu H. Microfluidic tools for developmental studies of small model organisms – nematodes, fruit flies, and zebrafish. Biotechnol J 2013; 8: 192-205
  • 23 Challal S, Bohni N, Buenafe OE, Esguerra CV, de Witte PA, Wolfender JL, Crawford AD. Zebrafish bioassay-guided microfractionation for the rapid in vivo identification of pharmacologically active natural products. Chimia (Aarau) 2012; 66: 229-232
  • 24 Liu J, Hafting J, Critchley AT, Banskota AH, Prithiviraj B. Components of the cultivated red seaweed Chondrus crispus enhance the immune response of Caenorhabditis elegans to Pseudomonas aeruginosa through the pmk-1, daf-2/daf-16, and skn-1 pathways. Appl Environ Microbiol 2013; 79: 7343-7350
  • 25 Durai S, Vigneshwari L, Balamurugan K. Caenorhabditis elegans-based in vivo screening of bioactives from marine sponge-associated bacteria against Vibrio alginolyticus . J Appl Microbiol 2013; 115: 1329-1342
  • 26 Kong C, Yehye WA, Abd Rahman N, Tan MW, Nathan S. Discovery of potential anti-infectives against Staphylococcus aureus using a Caenorhabditis elegans infection model. BMC Complement Altern Med 2014; 14: 4
  • 27 Lieke T, Steinberg CE, Ju J, Saul N. Natural marine and synthetic xenobiotics get on nematodeʼs nerves: Neuro-stimulating and neurotoxic findings in Caenorhabditis elegans . Mar Drugs 2015; 13: 2785-2812
  • 28 Sallam AA, Houssen WE, Gissendanner CR, Orabi KY, Foudah AI, El Sayed KA. Bioguided discovery and pharmacophore modeling of the mycotoxic indole diterpene alkaloids penitrems as breast cancer proliferation, migration, and invasion inhibitors. Medchemcomm 2013; 4: 1360-1369
  • 29 Bier E. Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 2005; 6: 9-23
  • 30 Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63: 411-436
  • 31 Matthews KA, Kaufman TC, Gelbart WM. Research resources for Drosophila: the expanding universe. Nat Rev Genet 2005; 6: 179-193
  • 32 Chang S, Bray SM, Li Z, Zarnescu DC, He C, Jin P, Warren ST. Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila . Nat Chem Biol 2008; 4: 256-263
  • 33 Pollitt SK, Pallos J, Shao J, Desai UA, Ma AA, Thompson LM, Marsh JL, Diamond MI. A rapid cellular FRET assay of polyglutamine aggregation identifies a novel inhibitor. Neuron 2003; 40: 685-694
  • 34 Sakowicz R, Berdelis MS, Ray K, Blackburn CL, Hopmann C, Faulkner DJ, Goldstein LS. A marine natural product inhibitor of kinesin motors. Science 1998; 280: 292-295
  • 35 Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005; 4: 35-44
  • 36 Jones RW, Huffmann MN. Fish embryos as bio-assay material in testing chemicals for effects on cell division and differentiation. Trans Am Microsc Soc 1957; 76: 177-183
  • 37 Peterson RT, Link BA, Dowling JE, Schreiber SL. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci USA 2000; 97: 12965-12969
  • 38 Crawford AD, Esguerra CV, de Witte PAM. Fishing for drugs from nature: zebrafish as a technology platform for natural product discovery. Planta Med 2008; 74: 624-632
  • 39 Crawford AD, Liekens S, Kamuhabwa AR, Maes J, Munck S, Busson R, Rozenski J, Esguerra CV, de Witte PAM. Zebrafish bioassay-guided natural product discovery: isolation of angiogenesis inhibitors from East African medicinal plants. PLoS One 2011; 6: e14694
  • 40 Baraban SC, Taylor MR, Castro PA, Baier H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 2005; 131: 759-768
  • 41 Afrikanova T, Serruys AS, Buenafe OE, Clinckers R, Smolders I, de Witte PAM, Crawford AD, Esguerra CV. Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One 2013; 8: e54166
  • 42 Suls A, Jaehn JA, Kecskés A, Weber Y, Weckhuysen S, Craiu DC, Siekierska A, Djémié T, Afrikanova T, Gormley P, von Spiczak S, Kluger G, Iliescu CM, Talvik T, Talvik I, Meral C, Caglayan H, Giraldez BG, Serratosa J, Lemke JR, Hoffman-Zacharska D, Szczepanik E, Barisic N, Komarek V, Hjalgrim H, Møller RS, Linnankivi T, Dimova P, Striano P, Zara F, Marini C, Guerrini R, Depienne C, Baulac S, Kuhlenbäumer G, Crawford AD, Lehesjoki AE, de Witte PAM, Palotie A, Lerche H, Esguerra CV, de Jonghe P, Helbig I. EuroEPINOMICS RES Consortium. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet 2013; 93: 967-975
  • 43 Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 2013; 4: 2410
  • 44 Schubert J, Siekierska A, Langlois M, May P, Huneau C, Becker F, Muhle H, Suls A, Lemke J, de Kovel CGF, Thiele H, Konrad K, Kawalia A, Toliat M, Sander T, Rüschendorf F, Caliebe A, Nagel I, Kohl B, Kecskés A, Jacmin M, Hardies K, Weckhuysen S, Riesch E, Dorn T, Brilstra EH, Baulac S, Møller RS, Hjalgrim H, Koeleman B, EuroEPINOMICS RES Consortium. Jurkat-Rott K, Lehmann-Horn F, Roach JC, Glusman G, Hood L, Galas DJ, Martin B, de Witte PAM, Biskup S, de Jonghe P, Helbig I, Balling R, Nürnberg P, Crawford AD, Esguerra CV, Weber YG, Lerche H. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet 2014; 46: 1327-1332
  • 45 Zhang Y, Kecskés A, Copmans D, Langlois M, Crawford AD, Ceulemans B, Lagae L, de Witte PAM, Esguerra CV. Pharmacological characterization of an antisense knockdown zebrafish model of Dravet syndrome: inhibition of epileptic seizures by the serotonin agonist fenfluramine. PLoS One 2015; 10: e0125898
  • 46 Orellana-Paucar AM, Serruys AS, Afrikanova T, Maes J, de Borggraeve W, Alen J, León-Tamariz F, Wilches-Arizábala IM, Crawford AD, de Witte PAM, Esguerra CV. Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models. Epilepsy Behav 2012; 24: 14-22
  • 47 Buenafe OE, Orellana-Paucar A, Maes J, Huang H, Ying X, de Borggraeve W, Crawford AD, Luyten W, Esguerra CV, de Witte PAM. Tanshinone IIA exhibits anticonvulsant activity in zebrafish and mouse seizure models. ACS Chem Neurosci 2013; 4: 1479-1487
  • 48 Challal S, Buenafe OE, Queiroz EF, Maljevic S, Marcourt L, Bock M, Kloeti W, Dayrit FM, Harvey AL, Lerche H, Esguerra CV, de Witte PA, Wolfender JL, Crawford AD. Zebrafish bioassay-guided microfractionation identifies anticonvulsant steroid glycosides from the Philippine medicinal plant Solanum torvum . ACS Chem Neurosci 2014; 5: 993-1004
  • 49 Bohni N, Cordero-Maldonado ML, Maes J, Siverio-Mota D, Marcourt L, Munck S, Kamuhabwa AR, Moshi ML, Esguerra CV, de Witte PAM, Crawford AD. Integration of microfractionation, qNMR and zebrafish screening for the in vivo bioassay-guided isolation and quantitative bioactivity analysis of natural products. PLoS One 2013; 8: e64006
  • 50 Kang MC, Kim KN, Kang SM, Yang X, Kim EA, Song CB, Nah JW, Jang MK, Lee JS, Jung WK, Jeon YJ. Protective effect of dieckol isolated from Ecklonia cava against ethanol caused damage in vitro and in zebrafish model. Environ Toxicol Pharmacol 2013; 36: 1217-1226
  • 51 Mesens N, Crawford AD, Menke A, Hung PD, van Goethem F, Nuyts R, Hansen E, Wolterbeek A, van Gompel J, de Witte PAM, Esguerra CV. Are zebrafish larvae suitable for assessing the hepatotoxicity potential of drug candidates?. J Appl Toxicol 2015; 35: 1017-1029
  • 52 Lin SW, Huang SC, Kuo HM, Chen CH, Ma YL, Chu TH, Bee YS, Wang EM, Wu CY, Sung PJ, Wen ZH, Wu DC, Sheu JH, Tai MH. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar Drugs 2015; 13: 861-878
  • 53 Liu G, Liu M, Wei J, Huang H, Zhang Y, Zhao J, Xiao L, Wu N, Zheng L, Lin X. CS5931, a novel polypeptide in Ciona savignyi, represses angiogenesis via inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Mar Drugs 2014; 12: 1530-1544
  • 54 Liu JX, Luo MQ, Xia M, Wu Q, Long SM, Hu Y, Gao GC, Yao XL, He M, Su H, Luo XM, Yao SZ. Marine compound catunaregin inhibits angiogenesis through the modulation of phosphorylation of akt and eNOS in vivo and in vitro . Mar Drugs 2014; 12: 2790-2801
  • 55 Qi X, Liu G, Qiu L, Lin X, Liu M. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVEC cells and in zebrafish embryos via inhibiting the VEGF signal systems. Biomed Pharmacother 2015; 75: 58-66
  • 56 Jheng YH, Lee LH, Ting CH, Pan CY, Hui CF, Chen JY. Zebrafish fed on recombinant Artemia expressing epinecidin-1 exhibit increased survival and altered expression of immunomodulatory genes upon Vibrio vulnificus infection. Fish Shellfish Immunol 2015; 42: 1-15
  • 57 Luesch H, Chanda SK, Raya RM, DeJesus PD, Orth AP, Walker JR, Izpisúa Belmonte JC, Schultz PG. A functional genomics approach to the mode of action of apratoxin A. Nat Chem Biol 2006; 2: 158-167