Z Orthop Unfall 2016; 154(03): 294-298
DOI: 10.1055/s-0042-103930
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Radiofrequency Ablation: Temperature Distribution in Adjacent Tissues

Radiofrequenzablation: Temperaturverteilung im angrenzenden Gewebe
R. Bornemann*
1   Department of Accident Surgery and Orthopaedics, Bonn University Hospital
,
S. F. Grötz*
2   Department of Radiology, Bonn University Hospital
,
P. H. Pennekamp
1   Department of Accident Surgery and Orthopaedics, Bonn University Hospital
,
K. E. Wilhelm
3   Department of Radiology, Bonn Evangelical Clinics
,
K. Sander
1   Department of Accident Surgery and Orthopaedics, Bonn University Hospital
,
D. C. Wirtz
1   Department of Accident Surgery and Orthopaedics, Bonn University Hospital
,
R. Pflugmacher
1   Department of Accident Surgery and Orthopaedics, Bonn University Hospital
› Author Affiliations
Further Information

Publication History

Publication Date:
28 June 2016 (online)

Abstract

Purpose: This clinical study investigates the use of a radiofrequency ablation system specifically developed for the ablation of spinal metastases. The investigation examines possible temperature-associated risks for the adjacent tissues. Material and Methods: A tumour model was simulated for 8 lumbar and 8 thoracic vertebrae of a human cadaveric spine. The tumour mass was ablated with the SpineSTAR electrode (SpineSTAR, DFINE Inc., CA), which has been specifically developed for the ablation of spinal metastases. During the ablation procedure, the temperatures of the vertebra, the epidural space, and the neural foramen were measured with thermocouples. These temperatures were documented as means with standard deviations. Possible differences between lumbar and thoracic vertebrae were analysed with the Mann-Whitney U test. Results: The maximal temperature of the lumbar vertebrae was 46.4 ± 3.3 °C near to the ablation zone, the temperature of the neural foramen was 37.0 ± 0 °C, and the temperature of the epidural space was 37.3 ± 0.7 °C. In the thoracic vertebrae, the temperature was 44.4 ± 1.7 °C near to the ablation zone, 7.9 ± 1.7 °C in the neural foramen, and 37.25 ± 0.7 °C in the epidural space. There was no significant difference in temperature distribution between treated lumbar and thoracic vertebrae. Conclusion: Ablation of spinal metastases in a cadaveric model using the SpineSTAR electrode was shown to be a safe method with respect to possible temperature-related risks for the adjacent tissues.

Zusammenfassung

Zielsetzung: In dieser Kadaverstudie soll die Sicherheit der Anwendung eines Ablationssystems, welches spezifisch für die Ablation von spinalen Metastasen entwickelt wurde, ermittelt werden. Dabei wird der Fokus auf mögliche temperaturbedingte Schädigungen der benachbarten Gewebe gelegt. Material und Methoden: Es wurde ein Tumormodell für 8 Lendenwirbel und 8 Brustwirbel des menschlichen Kadavers erzeugt. Die Ablation der simulierten Tumormasse wurde mit der spezifisch für Wirbelkörpermetastasen entwickelten SpineSTAR-Sonde (SpineSTAR, DFINE Inc., CA) durchgeführt. Während der Ablation wurden die Temperaturen des Wirbelkörpers, des Spinalkanals und des Neuroforamens gemessen. Diese wurden als Mittelwert und Standardabweichung dargestellt und mögliche Unterschiede zwischen der Anwendung der SpineSTAR-Sonde an Lendenwirbeln und Brustwirbeln mittels des Mann-Whitney-U-Tests ermittelt. Ergebnisse: Bei durchgeführter Ablation der Lendenwirbel betrug die maximale Temperatur des unmittelbar an die Ablationszone angrenzenden Bereichs im Wirbelkörper 46,4 ± 3,3 °C, im Bereich des Neuroforamens 37,0 ± 0 °C und im Spinalkanal 37,3 ± 0,7 °C. In den Brustwirbeln erreichte die Temperatur im Wirbelkörper unmittelbar nahe der Ablationszone 44,4 ± 1,7 °C, im Neuroforamen 37,9 ± 1,7 °C und im Spinalkanal 37,25 ± 0,7 °C. Es zeigten sich keine signifikanten Temperaturunterschiede zwischen der durchgeführten Ablation in Lendenwirbeln und Brustwirbeln. Schlussfolgerung: Die Ablation von spinalen Metastasen mittels der SpineSTAR-Sonde erwies sich im Kadavermodell als schonende Methode hinsichtlich möglicher Temperaturschädigungen des angrenzenden Gewebes.

* Both authors contributed equally to this work.


Supporting Information

 
  • References

  • 1 Kurup AN, Callstrom MR. Image-guided percutaneous ablation of bone and soft tissue tumors. Semin Intervent Radiol 2010; 27: 276-284
  • 2 Schlamann M, Forsting M, Uhlenbrock D. Tumore der Wirbelsäule und des Spinalkanals. In: Forsting M, Uhlenbrock D, Wanke I, Hrsg. MRT der Wirbelsäule und des Spinalkanals. Referenzreihe Radiologie. 2. Aufl. Stuttgart: Thieme; 2009: 163-215
  • 3 Roodman GD. Mechanisms of bone metastasis. N Engl J Med 2004; 350: 1655-1664
  • 4 Honore P, Mantyh PW. Bone cancer pain: from mechanism to model to therapy. Pain Med 2000; 1: 303-309
  • 5 Berutti A, Dogliotti I, Bitossi R et al. Incidence of skeletal complications in patients with bone metastatic prostate cancer and hormone refractory disease. J Urol 2000; 164: 1248-1253
  • 6 Radbruch L, Elsner E. Tumorschmerz. In: Baron R, Koppert W, Strumpf M, Willweber-Strumpf A, Hrsg. Praktische Schmerztherapie. 2. Aufl. Berlin, Heidelberg, New York: Springer; 2011: 377-392
  • 7 Wiedenhöfer B, Möhlenbruch M, Hemmer S et al. „Wirbelkörperstabilität“ im spinalen Metastasenmanagement. Orthopäde 2012; 41: 623-631
  • 8 Schaefer O, Lohrmann C, Markmiller M et al. Technical innovation. Combined treatment of a spinal metastasis with radiofrequency heat ablation and vertebroplasty. AJR Am J Roentgenol 2003; 180: 1075-1077
  • 9 Dupuy DE, Hong R, Oliver B et al. Radiofrequency ablation of spinal tumors: temperature distribution in the spinal canal. AJR Am J Roentgenol 2000; 175: 1263-1266
  • 10 Katonis P, Pasku D, Alpantaki K et al. Treatment of pathologic spinal fractures with combined radiofrequency ablation and balloon kyphoplasty. World J Surg Oncol 2009; 7: 90-99
  • 11 Masala S, Roselli M, Massari F et al. Radiofrequency heat ablation and vertebroplasty in the treatment of neoplastic vertebral body fractures. Anticancer Res 2004; 24: 3129-3133
  • 12 Toyota N, Naito A, Kakizawa H et al. Radiofrequency ablation therapy combined with cementoplasty for painful bone metastases: initial experience. Cardiovasc Intervent Radiol 2005; 28: 578-583
  • 13 Zheng L, Chen Z, Sun M et al. A preliminary study of the safety and efficacy of radiofrequency ablation with percutaneous kyphoplasty for thoracolumbar vertebral metastatic tumor treatment. Med Sci Monit 2014; 20: 556-563
  • 14 Yamada T, Tateishi A, Cho S et al. The effects of hyperthermia on the spinal cord. Spine (Phila Pa 1976) 1992; 17: 1386-1391
  • 15 Kawai T, Kaminou T, Sugiura K et al. Creation of a tumormimic model using a muscle paste for radiofrequency ablation of the lung. Cardiovasc Intervent Radiol 2009; 32: 296-302
  • 16 Grötz SF, Birnbaum K, Meyer C et al. Thermometry during coblation and radiofrequency ablation of vertebral metastases: a cadaver study. Eur Spine J 2013; 22: 1389-1393
  • 17 Adachi A, Kaminou T, Ogawa T et al. Heat distribution in the spinal canal during radiofrequency ablation for vertebral lesions: study in swine. Radiology 2008; 247: 374-380
  • 18 Bornemann R, Jansen TR, Wollny M et al. Klinische Aspekte zur Problematik der Wirbelkörpermetastasen, Möglichkeiten moderner Behandlungsmethoden unter besonderer Berücksichtigung der Radiofrequenzablation. Z Orthop Unfall 2014; 152: 351-357
  • 19 Filippiadis DK, Tutton S, Mazioti A et al. Percutaneous image-guided ablation of bone and soft tissue tumours: a review of available techniques and protective measures. Insights Imaging 2014; 5: 339-346
  • 20 Buy X, Basile A, Bierry G et al. Saline-infused bipolar radiofrequency ablation of high-risk spinal and paraspinal neoplasms. AJR Am J Roentgenol 2006; 186 (Suppl. 05) S322-S326
  • 21 Buy X, Tok CH, Szwarc D et al. Thermal protection during percutaneous thermal ablation procedures: interest of cabon dioxide dissection and temperature monitoring. Cardiovasc Intervent Radiol 2009; 32: 529-534
  • 22 Diehn FE, Neeman Z, Hvizda JL et al. Remote thermometry to avoid complications in radiofrequency ablation. J Vasc Interv Radiol 2003; 14: 1569-1576
  • 23 Pezeshki PS, Woo J, Akens MK et al. Evaluation of a bipolar-cooled radiofrequency device for ablation of bone metastases: preclinical assessment in porcine vertebrae. Spine J 2014; 14: 361-370
  • 24 Pezeshki PS, Davidson S, Murphy K et al. Comparison of the effect of two different bone-targeted radiofrequency ablation (RFA) systems alone and in combination with percutaneous vertebroplasty (PVP) on the biomechanical stability of the metastatic spine. Eur Spine J 2015; [Epub ahead of print]
  • 25 Hillen TJ, Anchala P, Friedman MV et al. Treatment of metastatic posterior vertebral body osseous tumors by using a targeted bipolar radiofrequency ablation device: technical note. Radiology 2014; 273: 261-267
  • 26 Anchala PR, Irving WD, Hillen TJ et al. Treatment of metastatic spinal lesions with a navigational bipolar radiofrequency ablation device: a multicenter retrospective study. Pain Physician 2014; 17: 317-327
  • 27 Wallace AN, Greenwood TJ, Jennings JW. Radiofrequency ablation and vertebral augmentation for palliation of painful spinal metastases. J Neurooncol 2015; 124: 111-118
  • 28 Schroeder JE, Ecker E, Skelly AC et al. Cement augmentation in spinal tumors: a systematic review comparing vertebroplasty and kyphoplasty. Evid Based Spine Care J 2011; 2: 35-43
  • 29 Li Z, Ni C, Chen L et al. Kyphoplasty versus vertebroplasty for the treatment of malignant vertebral compression fractures caused by metastases: a retrospetive study. Chin Med J (Engl) 2014; 127: 1493-1496
  • 30 Chen F, Xia YH, Cao WZ et al. Percutaneous kyphoplasty for the treatment of spinal metastases. Oncol Lett 2016; 11: 1799-1806
  • 31 Ley J, Jennings J, Baker J et al. Targeted radiofrequency ablation (t-RFA) of metastatic posterior vertebral body lesions in patients with soft tissue sarcomas. J Clin Oncol 2013; 31 (Suppl.) abstr 10585