Planta Med 2016; 82(06): 530-538
DOI: 10.1055/s-0042-101761
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

(−)-Hinokinin Induces G2/M Arrest and Contributes to the Antiproliferative Effects of Doxorubicin in Breast Cancer Cells

Nayanne Larissa Cunha
University of Franca, Franca, SP, Brazil
,
Gabriella Machado Teixeira
University of Franca, Franca, SP, Brazil
,
Thomás Duzzi Martins
University of Franca, Franca, SP, Brazil
,
Anderson Roberto Souza
University of Franca, Franca, SP, Brazil
,
Pollyana Francieli Oliveira
University of Franca, Franca, SP, Brazil
,
Guilherme Venâncio Símaro
University of Franca, Franca, SP, Brazil
,
Karen Cristina Souza Rezende
University of Franca, Franca, SP, Brazil
,
Natália dos Santos Gonçalves
University of Franca, Franca, SP, Brazil
,
Daniel Gottardo Souza
University of Franca, Franca, SP, Brazil
,
Denise Crispim Tavares
University of Franca, Franca, SP, Brazil
,
Marcio Luís Andrade Silva
University of Franca, Franca, SP, Brazil
,
Raquel Alves dos Santos
University of Franca, Franca, SP, Brazil
› Author Affiliations
Further Information

Publication History

received 13 July 2015
revised 31 December 2015

accepted 09 January 2016

Publication Date:
22 March 2016 (online)

Abstract

Breast cancer incidence rises worldwide and new chemotherapeutical strategies have been investigated to overcome chemoresistance. (−)-Hinokinin is a dibenzylbutyrolactone lignan derived from the partial synthesis of (−)-cubebin extracted from Piper cubeba seeds. Biological effects of dibenzylbutyrolactone lignans include antiviral, antitumor, anti-inflammatory, and trypanocidal activities. In the present study, we evaluated the ability of (−)-hinokinin to modulate the antiproliferative effects of doxorubicin intumoral (MCF-7 and SKBR-3) and normal (MCF-10 A) breast cell lines. Treatment with (−)-hinokinin did not affect the cellular proliferation or contribute to the antitproliferative effects of doxorubicin in MCF-10 A cells. After 24 and 48 hours of treatment with (−)-hinokinin, MCF-7 and SKBR-3 were accumulated in G2/M and, when combined with doxorubicin, (−)-hinokinin contributed to the antiproliferative effects of this chemotherapic by modulation of the cyclin-dependent kinase inhibitor 1. Apoptotic cell death was observed in response to (−)-hinokinin alone in MCF-7, but not in SKBR-3 even 72 hours after treatment. In MCF-7, doxorubicin-induced apoptosis was not increased by (−)-hinokinin. The findings of the present study suggest (−)-hinokinin as an antiproliferative agent that contributes to the effects of doxorubicin. (−)-Hinokinin modulates apoptotic cell death via the molecular regulation of the cell cycle and apoptotic control genes, but the cellular genetic background directly affects the cell fate decision in response to treatment.

 
  • References

  • 1 Han M, Diao YY, Jiang HL, Ying XY, Chen DW, Liang WQ, Gao JQ. Molecular mechanisms study of chemosensitization of doxorubicin-resistant human myelogenous leukemia cells induced by a composite polymer micelle. Int J Pharm 2011; 420: 404-411
  • 2 Vinod BS, Maliekal TT, Anto RJ. Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antiox Red Signal 2013; 18: 1307-1348
  • 3 Wang J, Song Y, Xu S, Zhang Q, Li Y, Tang D, Jin S. Down-regulation of ICBP90 contributes to doxorubicin resistance. Eur J Pharmacol 2011; 656: 33-38
  • 4 Mittal A, Tabasum S, Singh RP. Berberine in combination with doxorubicin suppresses growth of murine melanoma B16F10 cells in culture and xenograft. Phytomedicine 2014; 21: 340-347
  • 5 Quiles JL, Huertas JR, Battino M, Mataix J, Ramírez-Tortosa MC. Antioxidant nutrients and adriamycin toxicity. Toxicology 2002; 180: 79-95
  • 6 Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 2009; 16: 97-110
  • 7 Ayres DC, Loike JD. Lignans: chemical biological and clinical properties (chemistry and pharmacology of natural products). Cambridge: Cambridge University Press; 1990; 5: 85-106
  • 8 Yang LM, Lin SJ, Yang TH, Lee KH. Synthesis and anti-HIV activity of dibenzylbutirolactone lignans. Bioorg Med Lett 1996; 6: 941-944
  • 9 Esperandim VR, da Silva Ferreira D, Rezende KC, Cunha WR, Saraiva J, Bastos JK, e·Silva ML, de Albuquerque S. Evaluation of the in vivo therapeutic properties of (−)-cubebin and (−)-hinokinin against Trypanosoma cruzi . Exp Parasitol 2013; 133: 442-446
  • 10 Timple JM, Magalhães LG, Rezende KC, Pereira AC, Cunha WR, Silva MLA, Mortensen OV, Fontana AC. The lignan (−)-hinokinin displays modulatory effects on human monoamine and GABA transporter activities. J Nat Prod 2013; 76: 1889-1895
  • 11 Souza VA, Silva R, Pereira AC, Royo VA, Saraiva J, Souza GHB, da Silva Filho AA, Grando MD, Donate PM, Bastos JK, Albuquerque S, Silva MLA. Trypanocidal activity of (−)-cubebin derivatives against free amastigote forms of Trypanosoma cruzi . Bioorg Med Chem Lett 2005; 15: 303-307
  • 12 Andrade LN, Bizaia N, Caetano BL, Silva MLA, Cunha WR, da Silva Filho AA, Calefi OS, Nassar EJ, Bastos JK, Ciuffi KJ. Synthesis of (−)-hinokinin by oxidation of (−)-cubebin catalyzed by biomimetic metalloporhyrin catalytic systems. Catal Comm 2009; 10: 669-672
  • 13 Medola JF, Cintra VP, Silva EPP, Royo VA, Silva R, Saraiva J, Albuquerque S, Bastos JK, Silva MLA, Tavares DC. (−)-Hinokinin causes antigenotoxicity but not genotoxicity in peripheral blood of Wistar rats. Food Chem Toxicol 2007; 45: 638-642
  • 14 Resende FA, Tomazella IM, Barbosa LC, Ponce M, Furtado RA, Pereira AC, Bastos JK, Silva MLA, Tavares DC. Effect of dibenzylbutyrolactione lignan (−)-hinokinin on doxorubicin and methyl methanesulfonate clastogenicity in V79 Chinese hamster lung fibroblasts. Mutat Res 2010; 700: 62-66
  • 15 Resende FA, Barbosa LC, Tavares DC, de Camargo MS, de Souza Rezende KC, de Andrade e Silva ML, Varanda EA. Mutagenicity and antimutagenicity of (−)-hinokinin a trypanosomicidal compound measured by Salmonella microsome and comet assays. BMC Complement Altern Med 2012; 12: 203
  • 16 Di L, Yan GQ, Wang LY, Ma W, Wang KJ, Li N. Two new neolignans from Patrinia scabra with potent cytotoxic activity against HeLa and MNK-45 cells. Arch Pharm Res 2013; 36: 1198-1203
  • 17 Zhou J, Hu H, Long J, Wan F, Li L, Zhang S, Shi YE, Chen Y. Vitexin 6, a novel lignan, induces autophagy and apoptosis by activating the Jun N-terminal kinase pathway. Anticancer Drugs 2014; 24: 928-936
  • 18 Sumantran VN. Cellular chemosensitivity assays: an overview. In: Cree IA, editor Cancer cell culture – methods and protocols. 2nd edition. New York: Humana Press; 2011: 219-236
  • 19 Munshi A, Hobbs M, Meyn RE. Clonogenic cell survuival assay. In: Blumenthal RD, editor Chemosensitivity – Vol. 1: in vitro assays. New York: Humana Press; 2005: 21-28
  • 20 Zhu Q, Shen B, Zhang B, Zhang W, Chin SH, Jin J, Liao DF. Inhibition of AMP-activated protein kinase pathway sensitizes human leukemia K562 cells to nontoxic concentration of doxorubicin. Mol Cell Biochem 2010; 340: 275-281
  • 21 Sandhu R, Rivenbark AG, Coleman WB. Enhancement of chemotherapeutic efficacy in hypermethylator breast cancer cells through targeted and pharmacologic inhibition of DNMT3b. Breast Cancer Res Treat 2012; 131: 385-399
  • 22 Taylor WR, Stark GR. Regulation of the G2/M transition by p 53. Oncogene 2001; 20: 1803-1815
  • 23 Siu WY, Lau A, Arooz T, Chow JP, Ho HT, Poon RY. Topoisomerase poisons differentially activate DNA damage checkpoint through ataxia-telangiectasia mutated-dependent and independent mechanisms. Mol Cancer Ther 2004; 3: 621-632
  • 24 Luk SW, Siu SWF, Lai CK, Wu YJ, Pang SF. Cell cycle arrest by a natural product via G2/M checkpoint. Int J Med Sci 2005; 2: 64-69
  • 25 Deng P, Wang C, Chen L, Wang C, Du Y, Yan X, Chen M, Yang G, He G. Sesamin induces cell cycle arrest and apoptosis through the inhibition of signal transducer and activator transcription 3 signaling in human hepatocellular carcinoma cell line HepG2. Biol Pharm Bull 2013; 36: 1540-1548
  • 26 Bau DT, Tsai MH, Lo YL, Hsu CM, Tsai Y, Lee CC, Tsai FJ. Association of p 53 and p 21 (CDKN1 A/WAF1/CIP1) polymorphisms with oral cancer in Taiwan patients. Anticancer Res 2007; 27: 1559-1564
  • 27 Runnebaum IB, Nagarajan M, Bowman M, Soto D, Sukumar S. Mutations in p 53 as potential molecular markers for human breast cancer. Proc Natl Acad Sci U S A 1991; 88: 10657-10661
  • 28 Lacroix M, Toillon RA, Leclercq G. p 53 and breast cancer, an update. Endocr Relat Cancer 2006; 13: 293-325
  • 29 Wu C, Efferth T. Miltirone induces G2/M cell cycle arrest and apoptosis in CCRF-CEM acute lymphoblastic leukemia cells. J Nat Prod 2015; 78: 1339-1347
  • 30 Kaina B. DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol 2003; 66: 1547-1554
  • 31 Duangmano S, Sae-Lim P, Suksamrarn A, Patmasiriwat P, Domann FE. Curcubitacin B causes increased radiation sensitivity of human breast cancer cells via G2/M cell cycle arrest. J Oncol 2012; 2012: 601682
  • 32 Hirose Y, Berge MS, Pieper RO. Abrogation of the Chk1-mediated G2 checkpoint pathway potentiates temozolomide-induced toxicity in a p 53-independent manner in human glioblastoma cells. Cancer Res 2001; 61: 5843-5849
  • 33 Sausville EA, Arbuck SG, Messmann R, Headlee D, Bauer KS, Lush RM, Murgo A, Figg WD, Lahusen T, Jaken S, Jing X, Roberge M, Fuse E, Kuwabara T, Senderowicz AM. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001; 19: 2319-2333
  • 34 Carlson B, Lahusen T, Singh S, Loaiza-Perez A, Worland PJ, Pestell R, Albanese C, Sausville EA, Senderowicz AM. Down-regulation of cyclin D1 by transcriptional repression in MCF-7 human breast cancer cells induced by flavopiridol. Cancer Res 1999; 59: 4634-4641
  • 35 Tyagi AK, Singh RP, Agarwal C, Chan DC, Agarwal R. Silibinin strongly synergizes human prostate cancer DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest, and apoptosis. Clin Cancer Res 2002; 8: 3512-3519
  • 36 Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p-53-induced apoptosis. Science 2000; 288: 1053-1058
  • 37 Chan CH, Gao Y, Moten A, Lin HK. Novel ARF/p 53-independent senescence pathways in cancer repression. J Mol Med (Berl) 2011; 89: 857-867
  • 38 Phalke S, Mzoughi S, Bezzi M, Jennifer N, Mok WC, Low DH, Thike AA, Kuznetsov VA, Tan PH, Voorhoeve PM, Guccione E. p 53-Independent regulation of p 21Waf1/Cip1 expression and senescence by PRMT6. Nucleic Acids Res 2012; 40: 9534-9542
  • 39 da Silva R, de Souza GH, da Silva AA, de Souza VA, Pereira AC, Royo Vde A, e·Silva MLA, Donate PM, de Matos Araújo AL, Carvalho JCT, Bastos JK. Synthesis and biological activity evaluation of lignan lactones derived from (−)-cubebin. Bioorg Med Chem Lett 2005; 15: 1033-1037
  • 40 Souza GH, da Silva Filho AA, de Souza VA, Pereira AC, Royo Vde A, e·Silva ML, da Silva R, Donate PM, Carvalho JC, Bastos JK. Analgesic and anti-inflammatory activities evaluation of (−)-O-acetyl, (−)-O-methyl, (−)-O-dimethylethylamine cubebin and their preparation from (−)-cubebin. Farmaco 2004; 59: 55-61
  • 41 Franken NAP, Rodermond HM, Stap J, Haverman J, van Bree C. Clonogenic assay of cells in vitro . Nat Protoc 2006; 1: 2315-2319
  • 42 Santos RA, Takahashi CS. Anticlastogenic and antigenotoxic effects of selenomethionine on doxorubicin-induced damage in vitro in human lymphocytes. Food Chem Toxicol 2008; 46: 671-677