ZWR - Das Deutsche Zahnärzteblatt 2016; 125(01/02): 28
DOI: 10.1055/s-0042-100713
CME
© Georg Thieme Verlag KG Stuttgart · New York

Prophylaxe von Karies und Parodontalerkrankungen aus mikrobiologischer Sicht

S. Kneist
1   Erfurt
› Author Affiliations
Further Information

Publication History

Publication Date:
23 February 2016 (online)

Lernziele

Nach dem Durcharbeiten des Artikels sollte der Leser das zeitgemäße Wissen zur Kariesprophylaxe reflektiert haben:

  • den Terminus Plaque,

  • die „Erweiterte ökologische Plaquehypothese“,

  • Plaque bei Zahngesundheit und Zahnerkrankung,

  • pH-Werte, die zur Demineralisation der Zahnhartgewebe führen,

  • die Rolle freier Zucker und

  • die Leitlinien der Weltgesundheitsorganisation zur Zuckeraufnahme.

 
  • Literatur

  • 1 Kneist S, Callaway A. Kariesätiopathogenese aus mikrobiologischer Sicht – Aktueller Stand. ZWR 2015; 124: 18-24
  • 2 Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 1994; 8: 263-271
  • 3 Beighton D. Can the ecology of the dental biofilm be beneficially altered?. Adv Dent Res 2009; 21: 69-73
  • 4 Takahashi N, Nyvad B. The role of bacteria in the caries process: Ecological perspectives. J Dent Res 2011; 90: 294-303
  • 5 Newbrun E. Effectiveness of water fluoridation. J Public Health Dent 1989; 49: 279-289
  • 6 Marthaler TM. Salt fluoridation and oral health. Acta Med Acad 2013; 42: 140-155
  • 7 Marinho VC, Higgins JP, Sheiham A et al. Combinations of topical fluoride (toothpastes, mouthrinses, gels, varnishes) versus single topical fluoride for preventing dental caries in children adolescents. Cochrane Database Syst Rev 2004; I: CD002781
  • 8 Glass RL. The first international conference on the declining prevalence of dental caries. J Dent Res 1982; 61: 1301-1383
  • 9 Sheiham A, James WPT. Diet and dental caries: the pivotal role of free sugars reemphasized. J Dent Res 2015; 94: 1341-1347
  • 10 Meyer BD, Lee JY. The confluence of sugar, dental caries, and health policy. J Dent Res 2015; 94: 13338-13450
  • 11 Takahashi N, Yamada T. Glucose and lactate metabolism by Actinomyces naeslundii. Crit Rev Oral Biol Med 1999; 10: 487-503
  • 12 Niedermann R, Zhang J, Kashket S. Short-chain carboxylic-acid-stimulated, PMN-mediated gingival inflammation. Crit Rec Oral Biol Med 1997; 8: 269-290
  • 13 Kurita-Ochiai T, Seto S, Suzuki N et al. Butyric acid induces apaptosis in inflamed fibroblasts. J Dent Res 2008; 87: 51-55
  • 14 Takahashi N, Yamada T. Acid induced acid tolerance and acidogenicity of non-mutans streptococci. Oral Microbiol Immunol 1999; 14: 43-48
  • 15 Takahashi N. Microbial ecosystem in the oral cavity: metabolic diversity in an ecological niche and its relationship with oral diseases. In: Watanabe M, Takahashi N, Takada H. editors. Interface Oral Health Science. International Congress Series No. 1984. Amsterdam (Netherlands): Elsevier;
  • 16 Takahashi N, Nyvad B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res 2008; 42: 409-418
  • 17 Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986; 50: 353-380
  • 18 van Houte J. Role of microorganisms in caries etiology. J Dent Res 1994; 73: 672-681
  • 19 van Houte J, Sansone C, Joshipura K et al. In vitro acidogenic potential and mutans streptococci of human smooth surface plaque associated with initial caries lesions and sound enamel. J Dent Res 1991; 70: 1497-1502
  • 20 van Houte J, Sansone C, Joshipura K et al. Mutans streptococci and non-mutans streptococci acidogenic at low pH, and in vitro acidogenic potential of dental plaque in two different areas of the human dentition. J Dent Res 1991; 70: 1503-1507
  • 21 de Soet JJ, Nyvad B, Kilian M. Strain-related acid production by oral streptococci. Caries Res 2000; 34: 486-490
  • 22 Sansone C, van Houte J, Joshipura K et al. The association of mutans streptococci and non-mutans streptococci capable of acidogenesis at a low pH with dental caries on enamel and root surfaces. J Dent Res 1993; 72: 508-516
  • 23 Alam S, Brailsford SR, Adams S et al. Genotypic heterogeneity of Streptococcus oralis and distinct aciduric subpopulations in human dental plaque. Appl Environ Microbiol 2000; 66: 3330-3336
  • 24 Takahashi N, Saito K, Schachtele CF et al. Acid tolerance and acid-neutralizing activity of Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Oral Microbiol Immunol 1997; 12: 323-328
  • 25 Saito K, Takahashi N, Horiuchi H et al. Effects of glucose on formation of cytotoxic end-products and proteolytic activity of Prevotella intermedia, Prevotella nigrescens and Porphyromonas gingivalis. J Periodontal Res 2001; 36: 355-360
  • 26 Smalley JW, Birss AJ, Percival R et al. Temperature elevation regulates iron protoporphyrin IX and hemoglobin binding by Porphyromonas gingivalis. Curr Microbiol 2000; 41: 328-335
  • 27 Curtis MA, Percival RS, Devine D et al. Tempereature-dependent modulation of Porphyromonas gingivalis lipid A structure and interaction with the innate host defenses. Infect Immun 2011; 79: 1187-1193
  • 28 Takahashi N. Oral microbiom metbolism: from “who are they” to “what are they doing?”. J Dent Res 2015; 94: 1628-1637
  • 29 World Health Organization. Guidline: sugars intake for adults and children. Geneva (Switzerland): World Health Organization; Stand: 4. März 2015
  • 30 Nyvad B, Crielaard W, Mira A et al. Dental Caries from a molecular microbiological perspective. Caries Res 2013; 47: 89-102