Semin Musculoskelet Radiol 2022; 26(03): 338-353
DOI: 10.1055/s-0041-1740995
Review Article

Effects of Radiation Therapy and Chemotherapy on the Musculoskeletal System

Maria Pilar Aparisi Gómez
1   Department of Radiology, Auckland City Hospital, Auckland, New Zealand
2   Department of Radiology, IMSKE, Valencia, Spain
,
Francisco Aparisi
3   Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
,
Alessio Giuseppe Morganti
4   Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
5   Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Alma Mater Studiroum Bologna University, Bologna, Italy
,
Stefano Fanti
5   Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Alma Mater Studiroum Bologna University, Bologna, Italy
6   Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
,
Alberto Bazzocchi
7   Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
› Author Affiliations

Abstract

The effects of radiation and chemotherapy on the musculoskeletal (MSK) system are diverse, and interpretation may be challenging. The different lines of treatment have effects on diseased and normal marrow, and they may lead to complications that must be differentiated from recurrence or progression. This review analyzes the changes induced by radiotherapy and chemotherapy in the MSK system in the adult and pediatric population, and the expected associated imaging findings. Treatments are often combined, so the effects may blend. Awareness of the spectrum of changes, complications, and their imaging appearances is paramount for the correct diagnosis. The assessment of body composition during and after treatment allows potential interventions to implement long-term outcomes and personalize treatments. Imaging techniques such as computed tomography or magnetic resonance imaging provide information on body composition that can be incorporated into clinical pathways. We also address future perspectives in posttreatment assessment.



Publication History

Article published online:
02 June 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 van den Blink QU, Garcez K, Henson CC, Davidson SE, Higham CE. Pharmacological interventions for the prevention of insufficiency fractures and avascular necrosis associated with pelvic radiotherapy in adults. Cochrane Database Syst Rev 2018; 4: CD010604
  • 2 Yip C, Dinkel C, Mahajan A, Siddique M, Cook GJR, Goh V. Imaging body composition in cancer patients: visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome. Insights Imaging 2015; 6 (04) 489-497
  • 3 Babyn PS, Ranson M, McCarville ME. Normal bone marrow: signal characteristics and fatty conversion. Magn Reson Imaging Clin N Am 1998; 6 (03) 473-495
  • 4 Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 1997; 26 (07) 414-418
  • 5 Montazel JL, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 2003; 229 (03) 703-709
  • 6 Wasser K, Moehler T, Nosas-Garcia S. et al. Correlation of MRI and histopathology of bone marrow in patients with multiple myeloma [in German]. RoFo Fortschr Geb Rontgenstr Nuklearmed 2005; 177 (08) 1116-1122
  • 7 Stäbler A, Baur A, Bartl R, Munker R, Lamerz R, Reiser MF. Contrast enhancement and quantitative signal analysis in MR imaging of multiple myeloma: assessment of focal and diffuse growth patterns in marrow correlated with biopsies and survival rates. AJR Am J Roentgenol 1996; 167 (04) 1029-1036
  • 8 Musa Aguiar P, Zarantonello P, Aparisi Gómez MP. Differentiation between osteoporotic and neoplastic vertebral fractures: state of the art and future perspectives. Curr Med Imaging 2021; April 12 (Epub ahead of print)
  • 9 Baur A, Dietrich O, Reiser M. Diffusion-weighted imaging of bone marrow: current status. Eur Radiol 2003; 13 (07) 1699-1708
  • 10 Pawlyn C, Fowkes L, Otero S. et al. Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma?. Leukemia 2016; 30 (06) 1446-1448
  • 11 Thibault R, Genton L, Pichard C. Body composition: why, when and for who?. Clin Nutr 2012; 31 (04) 435-447
  • 12 Simoni P, Guglielmi R, Aparisi Gómez MP. Imaging of body composition in children. Quant Imaging Med Surg 2020; 10 (08) 1661-1671
  • 13 Aparisi Gómez MP, Ponti F, Mercatelli D. et al. Correlation between DXA and laboratory parameters in normal weight, overweight, and obese patients. Nutrition 2019; 61: 143-150
  • 14 Fearon K, Strasser F, Anker SD. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011; 12 (05) 489-495
  • 15 Stevens SK, Moore SG, Kaplan ID. Early and late bone-marrow changes after irradiation: MR evaluation. AJR Am J Roentgenol 1990; 154 (04) 745-750
  • 16 Blomlie V, Rofstad EK, Skjønsberg A, Tverå K, Lien HH. Female pelvic bone marrow: serial MR imaging before, during, and after radiation therapy. Radiology 1995; 194 (02) 537-543
  • 17 Yankelevitz DF, Henschke CI, Knapp PH, Nisce L, Yi Y, Cahill P. Effect of radiation therapy on thoracic and lumbar bone marrow: evaluation with MR imaging. AJR Am J Roentgenol 1991; 157 (01) 87-92
  • 18 Otake S, Mayr NA, Ueda T, Magnotta VA, Yuh WTC. Radiation-induced changes in MR signal intensity and contrast enhancement of lumbosacral vertebrae: do changes occur only inside the radiation therapy field?. Radiology 2002; 222 (01) 179-183
  • 19 Sacks EL, Goris ML, Glatstein E, Gilbert E, Kaplan HS. Bone marrow regeneration following large field radiation: influence of volume, age, dose, and time. Cancer 1978; 42 (03) 1057-1065
  • 20 Daldrup-Link HE, Henning T, Link TM. MR imaging of therapy-induced changes of bone marrow. Eur Radiol 2007; 17 (03) 743-761
  • 21 Shah KN, Racine J, Jones LC, Aaron RK. Pathophysiology and risk factors for osteonecrosis. Curr Rev Musculoskelet Med 2015; 8 (03) 201-209
  • 22 Hwang S, Panicek DM. Magnetic resonance imaging of bone marrow in oncology, Part 2. Skeletal Radiol 2007; 36 (11) 1017-1027
  • 23 Meixel AJ, Hauswald H, Delorme S, Jobke B. From radiation osteitis to osteoradionecrosis: incidence and MR morphology of radiation-induced sacral pathologies following pelvic radiotherapy. Eur Radiol 2018; 28 (08) 3550-3559
  • 24 Tai P, Hammond A, Dyk JV. et al. Pelvic fractures following irradiation of endometrial and vaginal cancers—a case series and review of literature. Radiother Oncol 2000; 56 (01) 23-28
  • 25 Aparisi Gómez MP, Ayuso Benavent C, Simoni P, Aparisi F, Guglielmi G, Bazzocchi A. Fat and bone: the multiperspective analysis of a close relationship. Quant Imaging Med Surg 2020; 10 (08) 1614-1635
  • 26 Azumi M, Matsumoto M, Suzuki K. et al. PET/MRI is useful for early detection of pelvic insufficiency fractures after radiotherapy for cervical cancer. Oncol Lett 2021; 22 (05) 776
  • 27 Abe H, Nakamura M, Takahashi S, Maruoka S, Ogawa Y, Sakamoto K. Radiation-induced insufficiency fractures of the pelvis: evaluation with 99mTc-methylene diphosphonate scintigraphy. AJR Am J Roentgenol 1992; 158 (03) 599-602
  • 28 Zhong X, Li J, Zhang L. et al. Characterization of insufficiency fracture and bone metastasis after radiotherapy in patients with cervical cancer detected by bone scan: role of magnetic resonance imaging. Front Oncol 2019; 9: 183
  • 29 Zhong X, Dong T, Tan Y. et al. Pelvic insufficiency fracture or bone metastasis after radiotherapy for cervical cancer? The added value of DWI for characterization. Eur Radiol 2020; 30 (04) 1885-1895
  • 30 Iida S, Harada Y, Shimizu K. et al. Correlation between bone marrow edema and collapse of the femoral head in steroid-induced osteonecrosis. AJR Am J Roentgenol 2000; 174 (03) 735-743
  • 31 Maheshwari PR, Nagar AM, Prasad SS, Shah JR, Patkar DP. Avascular necrosis of spine: a rare appearance. Spine 2004; 29 (06) E119-E122
  • 32 Libshitz HI, Cohen MA. Radiation-induced osteochondromas. Radiology 1982; 142 (03) 643-647
  • 33 Inoue YZ, Frassica FJ, Sim FH, Unni KK, Petersen IA, McLeod RA. Clinicopathologic features and treatment of postirradiation sarcoma of bone and soft tissue. J Surg Oncol 2000; 75 (01) 42-50
  • 34 Murray EM, Werner D, Greeff EA, Taylor DA. Postradiation sarcomas: 20 cases and a literature review. Int J Radiat Oncol Biol Phys 1999; 45 (04) 951-961
  • 35 Bjerkehagen B, Smeland S, Walberg L. et al. Radiation-induced sarcoma: 25-year experience from the Norwegian Radium Hospital. Acta Oncol 2008; 47 (08) 1475-1482
  • 36 Gladdy RA, Qin LX, Moraco N. et al. Do radiation-associated soft tissue sarcomas have the same prognosis as sporadic soft tissue sarcomas?. J Clin Oncol 2010; 28 (12) 2064-2069
  • 37 Weatherby RP, Dahlin DC, Ivins JC. Postradiation sarcoma of bone: review of 78 Mayo Clinic cases. Mayo Clin Proc 1981; 56 (05) 294-306
  • 38 Sheppard DG, Libshitz HI. Post-radiation sarcomas: a review of the clinical and imaging features in 63 cases. Clin Radiol 2001; 56 (01) 22-29
  • 39 Kuttesch Jr JF, Wexler LH, Marcus RB. et al. Second malignancies after Ewing's sarcoma: radiation dose-dependency of secondary sarcomas. J Clin Oncol 1996; 14 (10) 2818-2825
  • 40 Amendola BE, Amendola MA, McClatchey KD, Miller Jr CH. Radiation-associated sarcoma: a review of 23 patients with postradiation sarcoma over a 50-year period. Am J Clin Oncol 1989; 12 (05) 411-415
  • 41 Bacci G, Longhi A, Forni C. et al. Neoadjuvant chemotherapy for radioinduced osteosarcoma of the extremity: the Rizzoli experience in 20 cases. Int J Radiat Oncol Biol Phys 2007; 67 (02) 505-511
  • 42 Shaheen M, Deheshi BM, Riad S. et al. Prognosis of radiation-induced bone sarcoma is similar to primary osteosarcoma. Clin Orthop Relat Res 2006; 450 (450) 76-81
  • 43 Lewis VO, Raymond K, Mirza AN, Lin P, Yasko AW. Outcome of postradiation osteosarcoma does not correlate with chemotherapy response. Clin Orthop Relat Res 2006; 450 (450) 60-66
  • 44 Henderson TO, Rajaraman P, Stovall M. et al. Risk factors associated with secondary sarcomas in childhood cancer survivors: a report from the childhood cancer survivor study. Int J Radiat Oncol Biol Phys 2012; 84 (01) 224-230
  • 45 Virtanen A, Pukkala E, Auvinen A. Incidence of bone and soft tissue sarcoma after radiotherapy: a cohort study of 295,712 Finnish cancer patients. Int J Cancer 2006; 118 (04) 1017-1021
  • 46 Roebuck DJ. Skeletal complications in pediatric oncology patients. Radiographics 1999; 19 (04) 873-885
  • 47 Fletcher BD, Crom DB, Krance RA, Kun LE. Radiation-induced bone abnormalities after bone marrow transplantation for childhood leukemia. Radiology 1994; 191 (01) 231-235
  • 48 Kadan-Lottick NS, Dinu I, Wasilewski-Masker K. et al. Osteonecrosis in adult survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol 2008; 26 (18) 3038-3045
  • 49 Geczova L, Soltysova A, Gecz J, Sufliarska S, Horakova J, Mladosievicova B. Avascular necrosis of bone in childhood cancer patients: a possible role of genetic susceptibility. Bratisl Lek Listy 2015; 116 (05) 289-295
  • 50 Kunstreich M, Kummer S, Laws HJ, Borkhardt A, Kuhlen M. Osteonecrosis in children with acute lymphoblastic leukemia. Haematologica 2016; 101 (11) 1295-1305
  • 51 Marcucci G, Beltrami G, Tamburini A. et al. Bone health in childhood cancer: review of the literature and recommendations for the management of bone health in childhood cancer survivors. Ann Oncol 2019; 30 (06) 908-920
  • 52 Tucker MA, D'Angio GJ, Boice Jr JD. et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med 1987; 317 (10) 588-593
  • 53 Berrington de Gonzalez A, Kutsenko A, Rajaraman P. Sarcoma risk after radiation exposure. Clin Sarcoma Res 2012; 2 (01) 18
  • 54 Koshy M, Paulino AC, Mai WY, Teh BS. Radiation-induced osteosarcomas in the pediatric population. Int J Radiat Oncol Biol Phys 2005; 63 (04) 1169-1174
  • 55 Coca-Pelaz A, Mäkitie AA, Strojan P. et al. Radiation-induced sarcomas of the head and neck: a systematic review. Adv Ther 2021; 38 (01) 90-108
  • 56 Maghami EG, St-John M, Bhuta S, Abemayor E. Postirradiation sarcoma: a case report and current review. Am J Otolaryngol 2005; 26 (01) 71-74
  • 57 Gerard EL, Ferry JA, Amrein PC. et al. Compositional changes in vertebral bone marrow during treatment for acute leukemia: assessment with quantitative chemical shift imaging. Radiology 1992; 183 (01) 39-46
  • 58 Rahmouni A, Divine M, Mathieu D. et al. MR appearance of multiple myeloma of the spine before and after treatment. AJR Am J Roentgenol 1993; 160 (05) 1053-1057
  • 59 Zinzani PL. Lymphoma: diagnosis, staging, natural history, and treatment strategies. Semin Oncol 2005; 32 (1, Suppl 1): S4-S10
  • 60 Giles SL, Messiou C, Collins DJ. et al. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology 2014; 271 (03) 785-794
  • 61 Moulopoulos LA, Dimopoulos MA, Alexanian R, Leeds NE, Libshitz HI. Multiple myeloma: MR patterns of response to treatment. Radiology 1994; 193 (02) 441-446
  • 62 Mazzantini M, Di Munno O, Incerti-Vecchi L, Pasero G. Vertebral bone mineral density changes in female rheumatoid arthritis patients treated with low-dose methotrexate. Clin Exp Rheumatol 2000; 18 (03) 327-331
  • 63 Crofton PM, Ahmed SF, Wade JC. et al. Effects of intensive chemotherapy on bone and collagen turnover and the growth hormone axis in children with acute lymphoblastic leukemia. J Clin Endocrinol Metab 1998; 83 (09) 3121-3129
  • 64 Rozin AP. Is methotrexate osteopathy a form of bone idiosyncrasy?. Ann Rheum Dis 2003; 62 (11) 1123 ; author reply 1124
  • 65 Dowsett M, Folkerd E, Doody D, Haynes B. The biology of steroid hormones and endocrine treatment of breast cancer. Breast 2005; 14 (06) 452-457
  • 66 Holmes-Walker DJ, Woo H, Gurney H, Do VT, Chipps DR. Maintaining bone health in patients with prostate cancer. Med J Aust 2006; 184 (04) 176-179
  • 67 Howell A, Cuzick J, Baum M. et al; ATAC Trialists' Group. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet 2005; 365 (9453): 60-62
  • 68 Wysowski DK, Chang JT. Alendronate and risedronate: reports of severe bone, joint, and muscle pain. Arch Intern Med 2005; 165 (03) 346-347
  • 69 Shane E, Burr D, Ebeling PR. et al; American Society for Bone and Mineral Research. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2010; 25 (11) 2267-2294
  • 70 Chiang CY, Zebaze RMD, Ghasem-Zadeh A, Iuliano-Burns S, Hardidge A, Seeman E. Teriparatide improves bone quality and healing of atypical femoral fractures associated with bisphosphonate therapy. Bone 2013; 52 (01) 360-365
  • 71 Rizzoli R, Åkesson K, Bouxsein M. et al. Subtrochanteric fractures after long-term treatment with bisphosphonates: a European Society on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis, and International Osteoporosis Foundation Working Group Report. Osteoporos Int 2011; 22 (02) 373-390
  • 72 Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 2005; 63 (11) 1567-1575
  • 73 Young-Min SA, Herbert L, Dick M, Fordham J. Weekly alendronate-induced acute pseudogout. Rheumatology (Oxford) 2005; 44 (01) 131-132
  • 74 Ioannou Y, Isenberg DA. Current evidence for the induction of autoimmune rheumatic manifestations by cytokine therapy. Arthritis Rheum 2000; 43 (07) 1431-1442
  • 75 Hartman RP, Sundaram M, Okuno SH, Sim FH. Effect of granulocyte-stimulating factors on marrow of adult patients with musculoskeletal malignancies: incidence and MRI findings. AJR Am J Roentgenol 2004; 183 (03) 645-653
  • 76 Tsukadaira A, Okubo Y, Takashi S, Kobayashi H, Kubo K. Repeated arthralgia associated with granulocyte colony stimulating factor administration. Ann Rheum Dis 2002; 61 (09) 849-850
  • 77 Adachi JD, Papaioannou A. Corticosteroid-induced osteoporosis: detection and management. Drug Saf 2001; 24 (08) 607-624
  • 78 Kanis JA, Johansson H, Oden A. et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 2004; 19 (06) 893-899
  • 79 Blanco I, Krähenbühl S, Schlienger RG. Corticosteroid-associated tendinopathies: an analysis of the published literature and spontaneous pharmacovigilance data. Drug Saf 2005; 28 (07) 633-643
  • 80 Jones LC, Hungerford DS. Osteonecrosis: etiology, diagnosis, and treatment. Curr Opin Rheumatol 2004; 16 (04) 443-449
  • 81 Buttgereit F, Burmester GR. Rheumatoid arthritis: glucocorticoid therapy and body composition. Nat Rev Rheumatol 2016; 12 (08) 444-445
  • 82 Song A, Fish JD. Caring for survivors of childhood cancer: it takes a village. Curr Opin Pediatr 2018; 30 (06) 864-873
  • 83 Davies JH, Evans BA, Jenney ME, Gregory JW. Skeletal morbidity in childhood acute lymphoblastic leukaemia. Clin Endocrinol (Oxf) 2005; 63 (01) 1-9
  • 84 Cummings SR, Ferrari S, Eastell R. et al. Vertebral fractures after discontinuation of denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J Bone Miner Res 2018; 33 (02) 190-198
  • 85 Prado CMM, Baracos VE, McCargar LJ. et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res 2009; 15 (08) 2920-2926
  • 86 Prado CMM, Baracos VE, McCargar LJ. et al. Body composition as an independent determinant of 5-fluorouracil-based chemotherapy toxicity. Clin Cancer Res 2007; 13 (11) 3264-3268
  • 87 Bridge CP, Rosenthal M, Wright B. et al. Fully-automated analysis of body composition from CT in cancer patients using convolutional neural networks. In: Stoyanov D, Taylor Z, Sarikaya D. et al, eds. OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis. Vol 11041. (Lecture Notes in Computer Science; ). Cham, Switzerland: Springer International Publishing; 2018: 204-213
  • 88 Miralbell R, Lomax A, Cella L, Schneider U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int J Radiat Oncol Biol Phys 2002; 54 (03) 824-829
  • 89 Futamura G, Kawabata S, Siba H. et al. A case of radiation-induced osteosarcoma treated effectively by boron neutron capture therapy. Radiat Oncol 2014; 9 (01) 237
  • 90 Salas-Ramirez M, Tran-Gia J, Kesenheimer C. et al. Quantification of fat fraction in lumbar vertebrae: correlation with age and implications for bone marrow dosimetry in molecular radiotherapy. Phys Med Biol 2018; 63 (02) 025029
  • 91 Pichardo JC, Milner RJ, Bolch WE. MRI measurement of bone marrow cellularity for radiation dosimetry. J Nucl Med 2011; 52 (09) 1482-1489
  • 92 Carmona R, Pritz J, Bydder M. et al. Fat composition changes in bone marrow during chemotherapy and radiation therapy. Int J Radiat Oncol Biol Phys 2014; 90 (01) 155-163