Anästhesiol Intensivmed Notfallmed Schmerzther 2016; 51(05): 296-306
DOI: 10.1055/s-0041-103204
Fachwissen
Anästhesiologie
© Georg Thieme Verlag Stuttgart · New York

Patient Blood Management – Ist das Konzept auch bei Kindern sinnvoll?

Patient blood management: Does the approach also make sense in children?
Eva Wittenmeier
,
Christiane Goeters
,
Karin Becke
Further Information

Publication History

Publication Date:
23 May 2016 (online)

Zusammenfassung

Patient Blood Management beschreibt ein interdisziplinäres Konzept, welches den adäquaten und rationalen Einsatz von Fremdblut unter Ausschöpfen von validierten Strategien zur Prävention, Diagnostik und Therapie von Anämien, die Reduktion von Blutverlusten und Alternativen zur Fremdblutgabe zum Ziel hat. Während Patient Blood Management in der Erwachsenenmedizin schon verbreitet ist, sind Konzepte für die Behandlung von Kindern noch rar. Die Grundsätze der präoperativen Evaluation mit Optimierung des Erythrozytenvolumens, der perioperativen Minimierung von Blutverlusten, sowie des differenzierten Einsatzes von Blutprodukten gelten bei Erwachsenen wie bei Kindern. Wesentliche Unterschiede bestehen hinsichtlich der Physiologie des Hämoglobin- und des kardiovaskulären Systems vor allem bei Kindern im ersten Lebensjahr. Die zuverlässige Detektion einer drohenden anämischen Hypoxie kann bei Kindern erschwert sein, standardisierte Hämoglobin-Schwellenwerte als Indikation zur Transfusion sollten immer durch eine zusätzliche an den klinischen Befunden orientierte individuelle Risiko-Nutzen-Analyse gestützt werden.

Abstract

Patient blood management describes an interdisciplinary concept which aims at rational and adequate use of blood products accompanied by strategies to prevent and treat anemia, to reduce blood loss and to use alternatives to blood transfusion. While patient blood management has been widely implemented in adult medicine, concepts for such measures in the care of children are rare. The basic principles of preoperative evaluation, optimization of blood volume, perioperative minimizing of blood loss and a differentiated use of blood products are effective both in adults and children. There are differences in the physiology of hemoglobin and cardiovascular systems, particularly in the first year of life. It can be difficult to determine impending anemic hypoxia in children, so that indication for transfusion based on standardized hemoglobin threshold values should always be supported by an individual risk-benefit analysis based on clinical assessment.

Kernaussagen

  • Patient Blood Management ist ein wichtiges interdisziplinäres Projekt – für Erwachsene wie für Kinder.

  • Kernelelemente des PBM sind die präoperative Optimierung des Blutvolumens, die Minimierung des perioperativen Blutverlusts sowie der differenzierte Einsatz von Blutprodukten.

  • Kinder weisen v. a. im ersten Lebensjahr physiologische Besonderheiten auf, u. a. die Umstellung von fetalem auf adultes Hämoglobin mit erhöhten Hb-Werten.

  • Präoperativ bestehende Anämien bei Kindern sollen abgeklärt und ggf. behandelt werden.

  • Perioperative Blutverluste durch Blutentnahmen sollen minimiert werden.

  • Minimalinvasive OP-Techniken und eine sorgfältige Blutstillung durch den Operateur sind von großer Bedeutung, ebenso Wärmeerhalt, Kalziumhomöostase und ein ausgeglichener Säurebasenhaushalt.

  • Tranexamsäure verringert Blutverluste und kann auch bei Kindern als sicher eingestuft werden.

  • Point-of-Care-assistierte Gerinnungstherapie ist ein sinnvoller Bestandteil des PBM bei Kindern.

  • Die Indikationsstellung zur Transfusion sollte in Analogie zu Erwachsenen restriktiv und individuell erfolgen, in der Zusammenschau von publizierten Hb-Triggerwerten und klinischen Befunden.

Ergänzendes Material

 
  • Literatur

  • 1 Fowler AJ, Ahmad T, Phull MK et al. Meta-analysis of the association between preoperative anaemia and mortality after surgery. Br J Surg 2015; 102: 1314-1324
  • 2 Musallam KM, Tamim HM, Richards T et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet 2011; 378: 1396-1407
  • 3 Glance LG, Dick AW, Mukamel DB et al. Association between intraoperative blood transfusion and mortality and morbidity in patients undergoing noncardiac surgery. Anesthesiology 2011; 114: 283-292
  • 4 Kneyber MC, Hersi MI, Twisk JW et al. Red blood cell transfusion in critically ill children is independently associated with increased mortality. Intensive Care Med 2007; 33: 1414-1422
  • 5 Redlin M, Kukucka M, Boettcher W et al. Blood transfusion determines postoperative morbidity in pediatric cardiac surgery applying a comprehensive blood-sparing approach. J ThoracCardiovascSurg 2013; 146: 537-542
  • 6 Moskowitz DM, McCullough JN, Shander A et al. The impact of blood conservation on outcomes in cardiac surgery: is it safe and effective?. Ann ThoracSurg 2010; 90: 451-458
  • 7 Meybohm P, Herrmann E, Steinbicker AU et al. Patient Blood Management is associated with a substantial reduction of red blood cell utilization and safe for patient's outcome. Ann Surg (in press) 2016;
  • 8 Gombotz H, Hofmann A, Rehak P, Kurz J. Patient Blood Management (Teil 1) – Individuelles Behandlungskonzept zur Reduktion und Vermeidung von Anämie, Blutverlust und -transfusionen. AnasthesiolIntensivmedNotfallmedSchmerzther 2011; 46: 396-401
  • 9 Nguyen TT, Hill S, Austin TM, Whitney GM, Wellons 3rd JC, Lam HV. Use of blood-sparing surgical techniques and transfusion algorithms: association with decreased blood administration in children undergoing primary open craniosynostosis repair. J NeurosurgPediatr 2015; 31: 1-8
  • 10 Crowley M, Kirpalani H. A rational approach to red blood cell transfusion in the neonatal ICU. CurrOpinPediatr 2010; 22: 151-157
  • 11 Naguib AN, Winch PD, Tobias JD et al. A single-center strategy to minimize blood transfusion in neonates and children undergoing cardiac surgery. PediatrAnesth 2015; 25: 477-486
  • 12 Nguyen TT, Hill S, Austin TM, Whitney GM et al. Use of blood-sparing surgical techniques and transfusion algorithms: association with decreased blood administration in children undergoing primary open craniosynostosis repair. J NeurosurgPediatr 2015; 31
  • 13 Nguyen TT, Lam HV, Phillips M et al. Intraoperative optimization to decrease postoperative PRBC transfusion in children undergoing craniofacial reconstruction. PaediatrAnaesth 2015; 25: 294-300
  • 14 Vega RA, Lyon C, Kierce JF et al. Minimizing transfusion requirements for children undergoing craniosynostosis repair: the CHoR protocol. J NeurosurgPediatr 2014; 14: 190-195
  • 15 Garby L, Sjolin S, Vuille JC. Studies on erythro-kinetics in infancy. II. The relative rate of synthesis of haemoglobin F and haemoglobin A during the first months of life. Acta Paediatr 1962; 51: 245-254
  • 16 Barcelona SL, Thompson AA, Cote CJ. Intraoperative pediatric blood transfusion therapy: a review of common issues. Part I: hematologic and physiologic differences from adults; metabolic and infectious risks. PediatrAnesth 2005; 15: 716-726
  • 17 Sacks LM, Delivoria-Papadopoulos M. Hemoglobin-oxygen interactions. Seminars in Perinatology 1984; 8: 168-183
  • 18 Zimrin AB, Hess JR. Current issues relating to the transfusion of stored red blood cells. Vox Sanguinis 2009; 96: 93-103
  • 19 AWMF S1-Leitlinie 025/027. Kulozik AE, Kunz J. Leitlinie der Gesellschaft für Pädiatrische Onkologie und Hämatologie: Anämiediagnostik im Kindesalter. http://www.awmf.org/uploads/tx_szleitlinien/025-027l_S1_Anaemiediagnostik_2012-04.pdf Zugriff 20.11.2015
  • 20 Stainsby D, Jones H, Wells AW et al. Adverse outcomes of blood transfusion in children: analysis of UK reports to the serious hazards of transfusion scheme 1996–2005. Br J Haematol 2008; 141: 73-79
  • 21 Harrison E, Bolton P. Serious hazards of transfusion in children (SHOT). PediatrAnesth 2011; 21: 10-13
  • 22 Redlin M, Kukucka M, Boettcher W et al. Blood transfusion determines postoperative morbidity in pediatric cardiac surgery applying a comprehensive blood-sparing approach. J ThoracCardiovascSurg 2013; 146: 537-542
  • 23 Guzzetta NA. Benefits and risks of red blood cell transfusion in pediatric patients undergoing cardiac surgery. PediatrAnesth 2011; 21: 504-511
  • 24 Székely A, Cserép Z, Sápi E et al. Risks and predictors of blood transfusion in pediatric patients undergoing open heart operations. Ann ThoracSurg 2009; 87: 187-197
  • 25 Iyengar A, Scipione CN, Sheth P et al. Association of complications with blood transfusions in pediatric cardiac surgery patients. Ann ThoracSurg 2013; 96: 910-916
  • 26 de Gast-Bakker DH, de Wilde RB, Hazekamp MG et al. Safety and effects of two red blood cell transfusion strategies in pediatric cardiac surgery patients: a randomized controlled trial. Intensive Care Med 2013; 39: 2011-2019
  • 27 Bundesärztekammer. Richtlinien zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Hämotherapie). 2010
  • 28 Nebe T, Bentzien F, Bruegel M et al. Multizentrische Ermittlung von Referenzbereichen für Parameter des maschinellen Blutbildes. J Lab Med 2011; 35: 3-28
  • 29 Beutler E, Waalen J. The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration?. Blood 2006; 107: 1747-1750
  • 30 Lopez A, Cacoub P, Macdougall IC et al. Iron deficiencyanaemia. Lancet 2016; 387: 907-916
  • 31 WHO. Iron deficiency anaemia assessment, prevention, and control: a guide for programme managers. Geneva: World HealthOrganization; 2001
  • 32 Agarwal N, Prchal JT. Anemia of chronic disease (anemia of inflammation). Acta Haematologica 2009; 122: 103-108
  • 33 Kunz JB, Kulozik AE. Differentialdiagnose der kindlichen Anämie. Monatsschrift Kinderheilkunde 2012; 60: 395-405
  • 34 Alsaleh K, Alotaibi GS, Almodaimegh HS et al. The use of preoperative erythropoiesis-stimulating agents (ESAs) in patients who underwent knee or hip arthroplasty: a meta-analysis of randomized clinical trials. J Arthroplasty 2013; 28: 1463-1472
  • 35 Rineau E, Chaudet A, Chassier C et al. Implementing a blood management protocol during the entire perioperative period allows a reduction in transfusion rate in major orthopedic surgery: a before-after study. Transfusion 2016; 56: 673-681
  • 36 Ohlsson A, Aher SM. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database SystRev CD 004863 2012; 12
  • 37 Aher SM, Ohlsson A. Late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database SystRev CD 004868 2014; 23
  • 38 Naran S, Cladis F, Fearon J et al. Safety of preoperative erythropoietin in surgical calvarial remodeling: an 8-year retrospective review and analysis. Plast ReconstrSurg 2012; 130
  • 39 Eschbach JW, Egrie JC, Downing MR et al. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med 1987; 316: 73-78
  • 40 Fearon JA, Weinthal J. The use of recombinant erythropoietin in the reduction of blood transfusion rates in craniosynostosis repair in infants and children. Plast ReconstrSurg 2002; 109: 2190-2196
  • 41 White N, Bayliss S, Moore D. Systematic review of interventions for minimizing perioperative blood transfusion for surgery for craniosynostosis. J CraniofacSurg 2015; 26: 26-36
  • 42 Henseler O, Heiden M, Haschberger B et al. Bericht zur Meldung nach § 21 TFG für die Jahre 2010 und 2011. Bundesgesundheitsbl 2013; 56: 1352-1367
  • 43 British Committee for Standards in Haematology, Transfusion Task Force. Boulton FE, James V. Guidelines for policies on alternatives to allogeneic blood transfusion. 1. Predepositautologousblooddonationandtransfusion. Transfus Med 2007; 17: 354-365
  • 44 American Society of Anesthesiologists Task Force on Perioperative. Blood M. Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management. Anesthesiology 2015; 122: 241-275
  • 45 Fischer D, Geisen C, Steffen B et al. Patient Blood Management-Der Patient im Krankenhaus. AINS 2014; 49: 256-263
  • 46 Smoller BR, Kruskall MS. Phlebotomy for diagnostic laboratory tests in adults. Pattern of use and effect on transfusion requirements. N Engl J Med 1986; 314: 1233-1235
  • 47 Corwin HL, Parsonnet KC, Gettinger A. RBC transfusion in the ICU. Isthere a reason?. Chest 1995; 108: 767-771
  • 48 Delgado-Corcoran C, Bodily S, Frank DU et al. Reducing blood testing in pediatric patients after heart surgery: a quality improvement project. PediatrCrit Care Med 2014; 15: 756-761
  • 49 Bateman ST, Lacroix J, Boven K et al. Pediatric Acute Lung Injury and Sepsis Investigators Network. Anemia, blood loss, and blood transfusions in North American children in the intensive care unit. Am J RespirCrit Care Med 2008; 178: 26-33
  • 50 Carroll PD, Widness JA. Nonpharmacological, blood conservation techniques for preventing neonatal anemia – effective and promising strategies for reducing transfusion. SeminPerinatol 2012; 36: 232-243
  • 51 Lin JC, Strauss RG, Kulhavy JC et al. Phlebotomy overdraw in the neonatal intensive care nursery. Pediatrics 2000; 106
  • 52 Ringer SA, Richardson DK, Sacher RA et al. Variations in transfusion practice in neonatal intensive care. Pediatrics 1998; 101: 194-200
  • 53 Lemyre B, Sample M, Lacaze-Masmonteil T. Canadian Paediatric Society, Fetus and Newborn Committee. Minimizing blood loss and the need for transfusions in very premature infants. Paediatr Child Health 2015; 20: 451-462
  • 54 Valentine SL, Bateman ST. Identifying factors to minimize phlebotomy-induced blood loss in the pediatric intensive care unit. PediatrCrit Care Med 2012; 13: 22-27
  • 55 Park YH, Lee JH, Song HG et al. The accuracy of noninvasive hemoglobin monitoring using the radical-7 pulse CO-Oximeter in children undergoing neurosurgery. Anesth Analg 2012; 115: 1302-1307
  • 56 Wittenmeier E, Bellosevich S, Mauff S et al. Comparison of the gold standard of hemoglobin measurement with the clinical standard (BGA) and noninvasive hemoglobin measurement (SpHb) in small children: a prospective diagnostic observational study. PediatrAnesth 2015; 25: 1046-1053
  • 57 Bhat A, Upadhyay A, Jaiswal V et al. Validity of non-invasive point-of-care hemoglobin estimation in healthy and sick children-a method comparison study. Eur J Pediatr 2016; 175: 171-179
  • 58 Phillips MR, Khoury AL, Bortsov AV et al. A noninvasive hemoglobin monitor in the pediatric intensive care unit. J Surg Res 2015; 195: 257-262
  • 59 Suehiro K, Joosten A, Alexander B et al. Continuous noninvasive hemoglobin monitoring: ready for prime time?. CurrOpinCrit Care 2015; 21: 265-270
  • 60 Rice MJ, Gravenstein N, Morey TE. Review article: noninvasive hemoglobin monitoring: how accurate is enough?. AnesthAnalg 2013; 117: 902-907
  • 61 Rechner IJ, Twigg A, Davies AF et al. Evaluation of the HemoCue compared with the Coulter STKS for measurement of neonatal haemoglobin. Arch Dis Child Fetal Neonatal 2002; 86: 188-189
  • 62 Spielmann N, Mauch J, Madjdpour C et al. Accuracy and precision of hemoglobin point-of-care testing during major pediatric surgery. Int J Lab Hematol 2012; 34: 86-90
  • 63 Bundesärztekammer. Querschnittsleitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten. 2014
  • 64 Esper SA, Waters JH. Intra-operative cell salvage: a fresh look at the indications and contraindications. Blood Transfusion 2011; 9: 139-147
  • 65 Carless PA, Henry DA, Moxey AJ et al. Cell salvage for minimising perioperative allogeneic blood transfusion. Cochrane Database SystRev CD 001888 2010; 14
  • 66 Wang G, Bainbridge D, Martin J et al. The efficacy of an intraoperative cell saver during cardiac surgery: a meta-analysis of randomized trials. AnesthAnalg 2009; 109: 320-330
  • 67 Weiss JM, Skaggs D, Tanner J et al. Cell Saver: is it beneficial in scoliosis surgery?. J Child Orthop 2007; 1: 221-227
  • 68 Simpson MB, Georgopoulos G, Orsini E et al. Autologous transfusions for orthopaedic procedures at a children's hospital. J Bone Joint Surg Am 1992; 74: 652-658
  • 69 Bowen RE, Gardner S, Scaduto AA et al. Efficacy of intraoperative cell salvage systems in pediatric idiopathic scoliosis patients undergoing posterior spinal fusion with segmental spinal instrumentation. Spine 2010; 35: 246-251
  • 70 Dahmani S, Orliaguet GA, Meyer PG et al. Perioperative blood salvage during surgical correction of craniosynostosis in infants. Br J Anaesth 2000; 85: 550-555
  • 71 Baumann C, Lamesic G, Weiss M et al. Evaluation of the minimum volume of salvage blood required for the successful use of two different autotransfusion devices. PediatricAnesthesia 2015; 25: 258-264
  • 72 Seyfried T, Breu A, Gruber M et al. Processing of small volumes in blood salvage devices. Transfusion 2014; 54: 2775-2781
  • 73 Fearon JA. Reducing Allogenic Transfusions in Craniosynostosis Repair: A Prospective Analysis Using Blood Recycling. Plast ReconstrSurg 2004; 113: 1126-1130
  • 74 Huët C, Salmi LR, Fergusson D et al. A meta-analysis of the effectiveness of cell salvage to minimize perioperative allogeneic blood transfusion in cardiac and orthopedic surgery. International Study ofPerioperative Transfusion (ISPOT) Investigators. AnesthAnalg 1999; 89: 861-869
  • 75 Segal JB, Blasco-Colmenares E, Norris EJ et al. Preoperative acute normovolemichemodilution: a meta-analysis. Transfusion 2004; 44: 632-44
  • 76 Lavoie J. Blood transfusion risks and alternative strategies in pediatric patients. PaediatrAnaesth 2011; 21: 14-24
  • 77 Henry DA, Carless PA, Moxey AJ et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database SystRev. CD 001886 2011; 16
  • 78 Tzortzopoulou A, Cepeda MS, Schumann R et al. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database SystRev 006883 2008;
  • 79 Grant JA, Howard J, Luntley J et al. Perioperative blood transfusion requirements in pediatric scoliosis surgery: the efficacy of tranexamic acid. J PediatrOrthop 2009; 29: 300-304
  • 80 Dadure C, Sauter M, Bringuier S et al. Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized double-blind study. Anesthesiology 2011; 114: 856-861
  • 81 Goobie SM, Meier PM, Pereira LM et al. Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology 2011; 114: 862-871
  • 82 Stricker PA, Zuppa AF, Fiadjoe JE et al. Population pharmacokinetics of epsilon-aminocaproic acid in infants undergoing craniofacial reconstruction surgery. Br J Anaesth 2013; 110: 788-799
  • 83 Hsu G, Taylor JA, Fiadjoe JE et al. Aminocaproic acid administration is associated with reduced perioperative blood loss and transfusion in pediatric craniofacial surgery. Acta AnaesthesiolScand 2016; 60: 158-165
  • 84 Goobie SM, Meier PM, Sethna NF et al. Population pharmacokinetics of tranexamic acid in paediatric patients undergoing craniosynostosis surgery. ClinPharmacokinet 2013; 52: 267-276
  • 85 Schouten ES, van de Pol AC, Schouten AN et al. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. PediatrCrit Care 2009; 10: 182-190
  • 86 Basta MN, Stricker PA, Taylor JA. A systematic review of the use of antifibrinolytic agents in pediatric surgery and implications for craniofacial use. PediatrSurgInt 2012; 28: 1059-1069
  • 87 Faraoni D, Goobie SM. The efficacy of antifibrinolytic drugs in children undergoing noncardiac surgery: a systematic review of the literature. AnesthAnalg 2014; 118: 628-636
  • 88 Afshari A, Wikkelsø A, Brok J et al. Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database SystRev. CD 007871 2011; 16
  • 89 Haas T, Goobie S, Spielmann N et al. Improvements in patient blood management for pediatric craniosynostosis surgery using a ROTEM(®)-assisted strategy – feasibility and costs. PediatrAnesth 2014; 24: 774-780
  • 90 Nakayama Y, Nakajima Y, Tanaka KA et al. Thromboelastometry-guided intraoperative haemostatic management reduces bleeding and red cell transfusion after paediatric cardiac surgery. Br J Anaesth 2015; 114: 91-102
  • 91 Faraoni D, Willems A, Romlin BS et al. Development of a specific algorithm to guide haemostatic therapy in children undergoing cardiac surgery: a single-centre retrospective study. Eur J Anaesthesiol 2015; 32: 320-329
  • 92 Nakayama Y, Nakajima Y, Tanaka KA et al. Thromboelastometry-guided intraoperative haemostatic management reduces bleeding and red cell transfusion after paediatric cardiac surgery. Br J Anaesth 2015; 114: 91-102
  • 93 Haas T, Spielmann N, Restin T et al. Higher fibrinogen concentrations for reduction of transfusion requirements during major paediatric surgery: A prospective randomised controlled trial. Br J Anaesth 2015; 115: 234-243
  • 94 Wikkelsø A, Lunde J, Johansen M et al. Fibrinogen concentrate in bleedingpatients. Cochrane Database SystRev. CD 008864 2013; 29
  • 95 Hartrey R. Transfusion guidelines in children. I. AnaesthInt Care Med 2012; 13: 20-23
  • 96 Goodnough LT, Levy JH, Murphy MF. Blood transfusion 1: Concepts of blood transfusion in adults. Lancet 2013; 381: 1845-1854
  • 97 Hébert PC. Transfusion requirements in critical care (TRICC): a multicentre,randomized,controlled clinical study. Transfusion Requirements in Critical Care Investigators and the Canadian Critical care Trials Group. Br J Anaesth 1998; 81 (Suppl. 01)
  • 98 Carson JL, Terrin ML, Noveck H et al. FOCUS Investigators. Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med 2011; 365: 2453-2462
  • 99 Lacroix J, Hébert PC, Hutchison JS et al. TRIPICU Investigators, Canadian Critical Care Trials Group, Pediatric Acute Lung Injury and Sepsis Investigators Network. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med 2007; 356: 1609-1619
  • 100 Lejus C, De Windt A, LeBoeuf-Pouliquen D et al. A retrospective study about cerebral near-infrared spectroscopy monitoring during paediatric cardiac surgery and intra-operative patient blood management. AnaesthCrit Care Pain Med 2015; 34: 259-263
  • 101 Bell EF, Strauss RG, Widness JA et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics 2005; 115: 1685-1691
  • 102 Coté CJ, Zaslavsky A, Downes JJ et al. Postoperative apnea in former preterm infants after inguinal herniorrhaphy. A combinedanalysis. Anesthesiology 1995; 82: 809-822
  • 103 Whyte R, Kirpalani H. Low versus high haemoglobin concentration threshold for blood transfusion for preventing morbidity and mortality in very low birth weight infants. Cochrane Database SystRev CD 000512 2011;
  • 104 Rouette J, Trottier H, Ducruet T et al. Canadian Critical Care Trials Group; PALISI Network. Red blood cell transfusion threshold in postsurgical pediatric intensive care patients: a randomized clinical trial. Ann Surg 2010; 251: 421-427
  • 105 Kirpalani H, Whyte RK, Andersen C et al. The Premature Infants in Need of Transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr 2006; 149: 301-307
  • 106 Whyte RK, Kirpalani H, Asztalos EV et al. PINTOS Study Group. Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. Pediatrics 2009; 123: 207-213
  • 107 McCoy TE, Conrad AL, Richman LC et al. Neurocognitive profiles of preterm infants randomly assigned to lower or higher hematocrit thresholds for transfusion. Child Neuropsychol 2011; 17: 347-367
  • 108 Kozek-Langenecker SA, Afshari A, Albaladejo P et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol 2013; 30: 270-282
  • 109 Carson JL, Grossman BJ, Kleinman S et al. Clinical Transfusion Medicine Committee of the AABB. Red blood cell transfusion: a clinical practice guideline from the AABB. Ann Intern Med 2012; 157: 49-58
  • 110 Roseff SD, Luban NL, Manno CS. Guidelines for assessing appropriateness of pediatric transfusion. Transfusion 2002; 42: 1398-1413
  • 111 Raimer PL, Han YY, Weber MS et al. A normal capillary refill time of≤2 seconds is associated with superior vena cava oxygen saturations of≥ 70%. J Pediatr 2011; 158: 968-972
  • 112 AWMF S1- Leitlinie 001/032: Perioperative Infusionstherapie bei Kindern. http://www.awmf.org
  • 113 Lee AC, Reduque LL, Luban NL et al. Transfusion-associated hyperkalemic cardiac arrest in pediatric patients receiving massive transfusion. Transfusion 2014; 54: 244-254