Subscribe to RSS

DOI: 10.1055/s-0040-1720167
Vicarious Nucleophilic Substitution of Hydrogen: An Excellent Tool for Porphyrin Functionalization
Abstract
This graphical review addresses the functionalization of porphyrin derivatives. Simple porphyrin modifications (by introduction of an electron-withdrawing group, e.g., NO2, CO-R, into parent porphyrin system or complexation of the core ring with a highly electronegative unit, e.g., SnCl2) afford valuable intermediates in this area of chemistry. They are useful materials for further transformations, as such modifications increase the electrophilic character, thus allowing a broad spectrum of subsequent reactions. Such reactions are often utilized in the first steps of designed syntheses, leading to attractive and useful target porphyrin-like compounds featuring a high degree of complexity. In this regard, the vicarious nucleophilic substitution of hydrogen (VNS) has become one of the methods of choice. Specifically, it involves addition of a carbanion, bearing a leaving group X at the reactive center, to an electrophilic arene at positions occupied by hydrogen to form a σH-adduct. Subsequent base-induced β-elimination of HX then gives the product of nucleophilic substitution of hydrogen. This approach enables the synthesis of numerous porphyrins bearing up to ten new substituents on the meso-aryl rings (attached to positions 5, 10, 15, and 20) and up to six substituents at the β-positions. This graphical review is the first comprehensive account concerning VNS reaction in porphyrins.
Key words
porphyrins - vicarious nucleophilic substitution of hydrogen - carbanions - complexes - nitro group - meso-aryl- and β-functionalizationNucleophilic aromatic substitution applies to many organic reactions in the chemistry of aromatic compounds. The common step during these reactions is the formation of a σ-adduct. The nucleophile can then add to either the position substituted with a potential nucleofuge (e.g., halogen, alkoxy, sulfur-containing moiety, etc.) to give a σX-adduct or to a carbon atom bearing a hydrogen to give a σH-adduct. Thus, there are two general routes for the above reactions to occur: (a) SNAr substitution or (b) transformation involving abstraction of hydrogen. The first process is well-known and has been documented in detail in the literature.[1] Although the formation of σH-adducts is much faster, their subsequent transformation is a more complicated issue because direct departure of a hydride anion does not occur readily, thus the σH-adducts dissociate to give starting materials. Interestingly, in the last decades, there has been a rapid growth in the number of reports on hydrogen substitution by nucleophilic moieties.[1d] [2]
These reactions proceed according to many different mechanisms, i.e., direct departure of a hydride anion (in the Chichibabin reaction), oxidative nucleophilic substitution (ONSH), vicarious nucleophilic substitution of hydrogen (VNS), via nitroso compounds, ANRORC substitution (Addition of the Nucleophile, Ring Opening, and Ring Closure), and cine- and tele-substitution.[1d] [2b] [3] They are discussed in early monographs,[1d,2b] later review articles,[2c] , [3a–c] and in textbooks.[3d,e]
In conjunction with the above observations, it should be noted that nucleophilic aromatic substitution of hydrogen is a versatile tool for the introduction of a variety of substituents to electron-deficient aromatic rings. In this way, the synthesis of carbo- and (particularly) heterocyclic ring systems is possible: polysubstituted naphthalene derivatives (from VNS products),[4a] a variety of substituted indoles (via the VNS reaction),[4`] [c] [d] or nitroindoles (ONSH; from m-nitroanilines),[4e] many other natural products (e.g., makaluvamine C, a neoplastic agent isolated from marine sponges),[4f] [g] polycyclic heterocycles (via conversion of σH-adducts involving nitroso compounds),[4h] poly-carbocyclic drugs (VNS),[4i] amino-azines (ANRORC and ONSH mechanisms),[4`] [k] [l] amino-nitroaromatics (VNS, ONSH),[4m–o] nitrophenols (VNS),[4p,q] and a variety of multi-substituted electron-deficient arenes/heteroarenes obtained through cine- and tele-substitution.[4`] [s] [t]
One of the more interesting cases of substitution is the vicarious nucleophilic substitution of hydrogen (VNS). It consists of addition of carbanions, O-anions, or N-anions, bearing a leaving group X at the reactive center, to nitroarenes (or other electrophilic arenes) at positions occupied by hydrogen to form σH-adducts, followed by base-induced β-elimination of HX to give products of nucleophilic substitution of hydrogen (Scheme [1]).


This reaction was popularized in the literature by Mąkosza and co-workers.[2a] [c] , [3`] [b] [c] , [5a] After the VNS reaction concept was formulated, it was utilized many times by other research groups. Its name was coined in 1978.[5a] However, there are several examples of reactions, known for more than 100 years, for which the VNS mechanism should be assigned. The amination of highly active nitroarenes with hydroxylamine is one such example (Scheme [2]).[5`] [c] [d] Herein, the elimination step is probably similar to that observed for the aldol reaction (E1CB mechanism).


For a long time the VNS reaction was not been applied for the derivatization of porphyrins, although it is an excellent tool for this particular purpose. This topic is addressed in this graphical review. We hope that it will stimulate further research on the synthesis and functionalization of valuable porphyrins.




























Conflict of Interest
The authors declare no conflict of interest.
-
References
- 1a Bunnett JF, Zahler RE. Chem. Rev. 1951; 49: 273
- 1b Miller J. Aromatic Nucleophilic Substitution. Elsevier; Amsterdamm: 1968
- 1c Buncel E, Crampton MR, Strauss MJ, Terrier F. Electron-Deficient Aromatic- and Heteroaromatic-Base Interactions: The Chemistry of Anionic Sigma Complexes. Elsevier; Amsterdam: 1984
- 1d Terrier F. Nucleophilic Aromatic Displacement: The Influence of the Nitro Group. VCH Publishers; Weinheim: 1991
- 2a Mąkosza M, Winiarski J. Acc. Chem. Res. 1987; 20: 282
- 2b Chupakhin ON, Charushin VN, van der Plas HC. Nucleophilic Aromatic Substitution of Hydrogen . Academic Press; San Diego: 1994
- 2c Mąkosza M. Russ. Chem. Bull. 1996; 45: 491
- 2d Josephitis CM, Nguyen HM. H, McNally A. Chem Rev. 2023; 123: 7655
- 3a Mąkosza M, Wojciechowski K. Chem. Rev. 2004; 104: 2631
- 3b Mąkosza M. Chem. Soc. Rev. 2010; 39: 2855
- 3c Mąkosza M. Chem. Eur. J. 2020; 26: 15346
- 3d Carey FA, Sundberg RJ. Advanced Organic Chemistry, Parts A and B, 5th ed. Springer; New York: 2007
- 3e March J, Smith MB. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed. John Wiley & Sons; Hoboken: 2007
- 4a Tyrała A, Mąkosza M. Synthesis 1994; 264
- 4b Mąkosza M, Danikiewicz W, Wojciechowski K. Liebigs Ann. Chem. 1988; 203
- 4c Lerman L, Weinstock-Rosin M, Nudelman A. Synthesis 2004; 3043
- 4d Wojciechowski K, Mąkosza M. Synthesis 1986; 651
- 4e Mąkosza M, Barbasiewicz M, Moskalev N. Tetrahedron 2004; 60: 347
- 4f Kraus GA, Selvakumar N. Synlett 1998; 845
- 4g Kraus GA, Selvakumar N. J. Org. Chem. 1998; 63: 9846
- 4h Wróbel Z. Tetrahedron 1998; 54: 2607
- 4i Murphy RA. Jr, Cava MP. Tetrahedron Lett. 1984; 25: 803
- 4j van der Plas HC. Acc. Chem. Res. 1978; 11: 462
- 4k van der Plas HC. Tetrahedron 1985; 41: 237
- 4l van der Plas HC, Woźniak M. Croat. Chem. Acta 1986; 59: 33
- 4m Mąkosza M, Białecki M. J. Org. Chem. 1992; 57: 4784
- 4n Mąkosza M, Białecki M. J. Org. Chem. 1998; 63: 4878
- 4o Szpakiewicz B, Grzegorzek M. Zh. Org. Khim. 2004; 40: 869
- 4p Mąkosza M, Sienkiewicz K. J. Org. Chem. 1990; 55: 4979
- 4q Mąkosza M, Sienkiewicz K. J. Org. Chem. 1998; 63: 4199
- 4r Dainter RS, Suschitzky H, Wakefield BJ, Hughes N, Nelson AJ. Tetrahedron Lett. 1984; 25: 5693
- 4s Suwiński J, Świerczek K. Tetrahedron 2001; 57: 1639
- 4t Błażej S, Kwast A, Mąkosza M. Tetrahedron Lett. 2004; 45: 5413
- 5a Goliński J, Mąkosza M. Tetrahedron Lett. 1978; 19: 3495
- 5b Angeli A, Angelico F. Gazz. Chim. Ital. 1901; 31: 27
- 5c Price CC, Voong S.-T. Org. Synth. 1948; 28: 80
- 5d Price CC, Voong S.-T. Org. Synth. Coll. Vol. 3 1955; 664
- 6a Malinovskii VL, Vodzinskii SV, Zhilina ZI, Andronati SA, Mazepa AV. Zh. Org. Khim. 1996; 32: 119
- 6b Krattinger B, Nurco DJ, Smith KM. Chem. Commun. 1998; 757
- 6c Richeter S, Jeandon C, Ruppert R, Callot HJ. Tetrahedron Lett. 2001; 42: 2103
- 6d Ostrowski S, Shim YK. Bull. Korean Chem. Soc. 2001; 22: 9
- 7a Ostrowski S, Mikus A, Shim YK, Lee J.-C, Seo E.-Y, Lee K.-I, Olejnik M. Heterocycles 2002; 57: 1615
- 7b Mąkosza M, Paszewski M. Polish J. Chem. 2005; 79: 163
- 7c Ostrowski S. A.Y.: Basic Sci. & Eng. 2003; 12: 523 ; Chem. Abstr. 2005, 142, 347339p
- 7d Ostrowski S, Mikus A. Mol. Divers. 2003; 6: 315
- 7e Ostrowski S, Mikus A. Ann. Polish Chem. Soc. 2003; 2: 62
- 7f Ostrowski S, Mikus A. Molecules-Molbank 2003; M329
- 7g Ostrowski S, Mikus A. Heterocycles 2005; 65: 2339
- 7h Wyrębek P, Mikus A, Ostrowski S. Jordan J. Chem. 2006; 1: 39
- 7i Ostrowski S, Urbańska N, Mikus A. Tetrahedron Lett. 2003; 44: 4373
- 7j Ostrowski S, Mikus A, Łopuszyńska B. Tetrahedron 2004; 60: 11951
- 7k Ostrowski S, Mikus A, Borkowska A. Proceedings of ’The Seventh International Electronic Conference on Synthetic Organic Chemistry’. Seijas JA, Ji D.-C, Lin S.-K. Basel,; 2003. [A-002], ISBN 3-906980-13-8 (CD-ROM edition)
- 7l Ostrowski S, Mikus A. Proceedings of ’The Seventh International Electronic Conference on Synthetic Organic Chemistry’. Seijas JA, Ji D.-C, Lin S.-K. Basel,; 2003. [A-003], ISBN 3-906980-13-8 (CD-ROM edition)
- 8a Ostrowski S, Grzyb S, Mikus A. Helv. Chim. Acta 2007; 90: 2000
- 8b Ostrowski S, Grzyb S. Jordan J. Chem. 2007; 2: 297
- 8c Grzyb S, Ostrowski S. Jordan J. Chem. 2012; 7: 231
- 8d Katritzky AR, Laurenzo KS. J. Org. Chem. 1988; 53: 3978
- 8e Ostrowski S, Kosmalska M, Mikus A. Tetrahedron Lett. 2017; 58: 2011
- 8f Mąkosza M, Owczarczyk Z. Tetrahedron Lett. 1987; 28: 3021
- 8g Mąkosza M, Owczarczyk Z. J. Org. Chem. 1989; 54: 5094
- 9a Ostrysz S, Mikus A, Ostrowski S. Int. J. Sci. 2014; 3: 99
- 9b Ostrowski S, Raczko AM. Helv. Chim. Acta 2005; 88: 974
- 9c Mikus A, Ostrowski S. J. Porphyrins Phthalocyanines 2024; 28: 647
- 9d Eddahmi M, Moura NM. M, Ramos CI. V, Bouissane L, Faustino MA. F, Cavaleiro JA. S, Rakib EM, Neves MG. P. M. S. Arabian J. Chem. 2020; 13: 5849
- 10a Mikus A, Rosa M, Ostrowski S. Molecules 2019; 24: 838
- 10b Mikus A, Ostrowski S. Struct. Chem. 2022; 33: 1251
- 10c Mikus A, Ostrowski S. Struct. Chem. 2022; 33: 2261
- 10d Mikus A. Mendeleev Commun. 2024; 34: 70
- 10e Rosa M, Ostrowski S. ChemistrySelect 2022; 7: e202200290
- 10f Mikus A, Ostrysz S, Ostrowski S. Eur. J. Org. Chem. 2025; DOI:
- 11a Ostrowski S, Grzyb S. Tetrahedron Lett. 2012; 53: 6355
- 11b Richeter S, Hadj-Aïssa A, Taffin C, van der Lee A, Leclercq D. Chem. Commun. 2007; 2148
- 11c Lefebvre J.-F, Leclercq D, Gisselbrecht J.-P, Richeter S. Eur. J. Org. Chem. 2010; 1912
- 11d Ostrowski S, Grzyb S, Godlewski B. Curr. Org. Chem. 2024; 28: 1542
- 11e Ostrysz S, Mikus A, Ostrowski S. Org. Commun. 2025; 18: 100
Corresponding Author
Publication History
Received: 20 November 2024
Accepted after revision: 11 February 2025
Article published online:
29 July 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Bunnett JF, Zahler RE. Chem. Rev. 1951; 49: 273
- 1b Miller J. Aromatic Nucleophilic Substitution. Elsevier; Amsterdamm: 1968
- 1c Buncel E, Crampton MR, Strauss MJ, Terrier F. Electron-Deficient Aromatic- and Heteroaromatic-Base Interactions: The Chemistry of Anionic Sigma Complexes. Elsevier; Amsterdam: 1984
- 1d Terrier F. Nucleophilic Aromatic Displacement: The Influence of the Nitro Group. VCH Publishers; Weinheim: 1991
- 2a Mąkosza M, Winiarski J. Acc. Chem. Res. 1987; 20: 282
- 2b Chupakhin ON, Charushin VN, van der Plas HC. Nucleophilic Aromatic Substitution of Hydrogen . Academic Press; San Diego: 1994
- 2c Mąkosza M. Russ. Chem. Bull. 1996; 45: 491
- 2d Josephitis CM, Nguyen HM. H, McNally A. Chem Rev. 2023; 123: 7655
- 3a Mąkosza M, Wojciechowski K. Chem. Rev. 2004; 104: 2631
- 3b Mąkosza M. Chem. Soc. Rev. 2010; 39: 2855
- 3c Mąkosza M. Chem. Eur. J. 2020; 26: 15346
- 3d Carey FA, Sundberg RJ. Advanced Organic Chemistry, Parts A and B, 5th ed. Springer; New York: 2007
- 3e March J, Smith MB. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed. John Wiley & Sons; Hoboken: 2007
- 4a Tyrała A, Mąkosza M. Synthesis 1994; 264
- 4b Mąkosza M, Danikiewicz W, Wojciechowski K. Liebigs Ann. Chem. 1988; 203
- 4c Lerman L, Weinstock-Rosin M, Nudelman A. Synthesis 2004; 3043
- 4d Wojciechowski K, Mąkosza M. Synthesis 1986; 651
- 4e Mąkosza M, Barbasiewicz M, Moskalev N. Tetrahedron 2004; 60: 347
- 4f Kraus GA, Selvakumar N. Synlett 1998; 845
- 4g Kraus GA, Selvakumar N. J. Org. Chem. 1998; 63: 9846
- 4h Wróbel Z. Tetrahedron 1998; 54: 2607
- 4i Murphy RA. Jr, Cava MP. Tetrahedron Lett. 1984; 25: 803
- 4j van der Plas HC. Acc. Chem. Res. 1978; 11: 462
- 4k van der Plas HC. Tetrahedron 1985; 41: 237
- 4l van der Plas HC, Woźniak M. Croat. Chem. Acta 1986; 59: 33
- 4m Mąkosza M, Białecki M. J. Org. Chem. 1992; 57: 4784
- 4n Mąkosza M, Białecki M. J. Org. Chem. 1998; 63: 4878
- 4o Szpakiewicz B, Grzegorzek M. Zh. Org. Khim. 2004; 40: 869
- 4p Mąkosza M, Sienkiewicz K. J. Org. Chem. 1990; 55: 4979
- 4q Mąkosza M, Sienkiewicz K. J. Org. Chem. 1998; 63: 4199
- 4r Dainter RS, Suschitzky H, Wakefield BJ, Hughes N, Nelson AJ. Tetrahedron Lett. 1984; 25: 5693
- 4s Suwiński J, Świerczek K. Tetrahedron 2001; 57: 1639
- 4t Błażej S, Kwast A, Mąkosza M. Tetrahedron Lett. 2004; 45: 5413
- 5a Goliński J, Mąkosza M. Tetrahedron Lett. 1978; 19: 3495
- 5b Angeli A, Angelico F. Gazz. Chim. Ital. 1901; 31: 27
- 5c Price CC, Voong S.-T. Org. Synth. 1948; 28: 80
- 5d Price CC, Voong S.-T. Org. Synth. Coll. Vol. 3 1955; 664
- 6a Malinovskii VL, Vodzinskii SV, Zhilina ZI, Andronati SA, Mazepa AV. Zh. Org. Khim. 1996; 32: 119
- 6b Krattinger B, Nurco DJ, Smith KM. Chem. Commun. 1998; 757
- 6c Richeter S, Jeandon C, Ruppert R, Callot HJ. Tetrahedron Lett. 2001; 42: 2103
- 6d Ostrowski S, Shim YK. Bull. Korean Chem. Soc. 2001; 22: 9
- 7a Ostrowski S, Mikus A, Shim YK, Lee J.-C, Seo E.-Y, Lee K.-I, Olejnik M. Heterocycles 2002; 57: 1615
- 7b Mąkosza M, Paszewski M. Polish J. Chem. 2005; 79: 163
- 7c Ostrowski S. A.Y.: Basic Sci. & Eng. 2003; 12: 523 ; Chem. Abstr. 2005, 142, 347339p
- 7d Ostrowski S, Mikus A. Mol. Divers. 2003; 6: 315
- 7e Ostrowski S, Mikus A. Ann. Polish Chem. Soc. 2003; 2: 62
- 7f Ostrowski S, Mikus A. Molecules-Molbank 2003; M329
- 7g Ostrowski S, Mikus A. Heterocycles 2005; 65: 2339
- 7h Wyrębek P, Mikus A, Ostrowski S. Jordan J. Chem. 2006; 1: 39
- 7i Ostrowski S, Urbańska N, Mikus A. Tetrahedron Lett. 2003; 44: 4373
- 7j Ostrowski S, Mikus A, Łopuszyńska B. Tetrahedron 2004; 60: 11951
- 7k Ostrowski S, Mikus A, Borkowska A. Proceedings of ’The Seventh International Electronic Conference on Synthetic Organic Chemistry’. Seijas JA, Ji D.-C, Lin S.-K. Basel,; 2003. [A-002], ISBN 3-906980-13-8 (CD-ROM edition)
- 7l Ostrowski S, Mikus A. Proceedings of ’The Seventh International Electronic Conference on Synthetic Organic Chemistry’. Seijas JA, Ji D.-C, Lin S.-K. Basel,; 2003. [A-003], ISBN 3-906980-13-8 (CD-ROM edition)
- 8a Ostrowski S, Grzyb S, Mikus A. Helv. Chim. Acta 2007; 90: 2000
- 8b Ostrowski S, Grzyb S. Jordan J. Chem. 2007; 2: 297
- 8c Grzyb S, Ostrowski S. Jordan J. Chem. 2012; 7: 231
- 8d Katritzky AR, Laurenzo KS. J. Org. Chem. 1988; 53: 3978
- 8e Ostrowski S, Kosmalska M, Mikus A. Tetrahedron Lett. 2017; 58: 2011
- 8f Mąkosza M, Owczarczyk Z. Tetrahedron Lett. 1987; 28: 3021
- 8g Mąkosza M, Owczarczyk Z. J. Org. Chem. 1989; 54: 5094
- 9a Ostrysz S, Mikus A, Ostrowski S. Int. J. Sci. 2014; 3: 99
- 9b Ostrowski S, Raczko AM. Helv. Chim. Acta 2005; 88: 974
- 9c Mikus A, Ostrowski S. J. Porphyrins Phthalocyanines 2024; 28: 647
- 9d Eddahmi M, Moura NM. M, Ramos CI. V, Bouissane L, Faustino MA. F, Cavaleiro JA. S, Rakib EM, Neves MG. P. M. S. Arabian J. Chem. 2020; 13: 5849
- 10a Mikus A, Rosa M, Ostrowski S. Molecules 2019; 24: 838
- 10b Mikus A, Ostrowski S. Struct. Chem. 2022; 33: 1251
- 10c Mikus A, Ostrowski S. Struct. Chem. 2022; 33: 2261
- 10d Mikus A. Mendeleev Commun. 2024; 34: 70
- 10e Rosa M, Ostrowski S. ChemistrySelect 2022; 7: e202200290
- 10f Mikus A, Ostrysz S, Ostrowski S. Eur. J. Org. Chem. 2025; DOI:
- 11a Ostrowski S, Grzyb S. Tetrahedron Lett. 2012; 53: 6355
- 11b Richeter S, Hadj-Aïssa A, Taffin C, van der Lee A, Leclercq D. Chem. Commun. 2007; 2148
- 11c Lefebvre J.-F, Leclercq D, Gisselbrecht J.-P, Richeter S. Eur. J. Org. Chem. 2010; 1912
- 11d Ostrowski S, Grzyb S, Godlewski B. Curr. Org. Chem. 2024; 28: 1542
- 11e Ostrysz S, Mikus A, Ostrowski S. Org. Commun. 2025; 18: 100































