J Knee Surg 2020; 33(11): 1069-1077
DOI: 10.1055/s-0040-1713778
Special Focus Section

Classification, Categorization, and Algorithms for Articular Cartilage Defects

1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Aaron M. Stoker
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
› Author Affiliations

Abstract

There is a critical unmet need in the clinical implementation of valid preventative and therapeutic strategies for patients with articular cartilage pathology based on the significant gap in understanding of the relationships between diagnostic data, disease progression, patient-related variables, and symptoms. In this article, the current state of classification and categorization for articular cartilage pathology is discussed with particular focus on machine learning methods and the authors propose a bedside–bench–bedside approach with highly quantitative techniques as a solution to these hurdles. Leveraging computational learning with available data toward articular cartilage pathology patient phenotyping holds promise for clinical research and will likely be an important tool to identify translational solutions into evidence-based clinical applications to benefit patients. Recommendations for successful implementation of these approaches include using standardized definitions of articular cartilage, to include characterization of depth, size, location, and number; using measurements that minimize subjectivity or validated patient-reported outcome measures; considering not just the articular cartilage pathology but the whole joint, and the patient perception and perspective. Application of this approach through a multistep process by a multidisciplinary team of clinicians and scientists holds promise for validating disease mechanism-based phenotypes toward clinically relevant understanding of articular cartilage pathology for evidence-based application to orthopaedic practice.



Publication History

Received: 01 May 2020

Accepted: 24 May 2020

Article published online:
14 July 2020

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Chen C-H, Liu Y-S, Chou P-H, Hsieh C-C, Wang C-K. MR grading system of osteochondritis dissecans lesions: comparison with arthroscopy. Eur J Radiol 2013; 82 (03) 518-525
  • 2 van den Borne MPJ, Raijmakers NJH, Vanlauwe J. , et al; International Cartilage Repair Society. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthritis Cartilage 2007; 15 (12) 1397-1402
  • 3 Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 1989; 17 (04) 505-513
  • 4 Smith GD, Taylor J, Almqvist KF. et al. Arthroscopic assessment of cartilage repair: a validation study of 2 scoring systems. Arthroscopy 2005; 21 (12) 1462-1467
  • 5 Batiste DL, Kirkley A, Laverty S, Thain LMF, Spouge AR, Holdsworth DW. Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. Osteoarthritis Cartilage 2004; 12 (12) 986-996
  • 6 Crema MD, Roemer FW, Marra MD. et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (01) 37-61
  • 7 Hilal S, Sikking E, Shaik MA. et al. Cortical cerebral microinfarcts on 3T MRI: A novel marker of cerebrovascular disease. Neurology 2016; 87 (15) 1583-1590
  • 8 Mosher TJ, Zhang Z, Reddy R. et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology 2011; 258 (03) 832-842
  • 9 Belle A, Thiagarajan R, Soroushmehr SMR, Navidi F, Beard DA, Najarian K. Big data analytics in healthcare. BioMed Res Int 2015; 2015: 370194
  • 10 Fang R, Pouyanfar S, Yang Y, Chen S-C, Iyengar SS. Computational health informatics in the big data age: a survey. ACM Comput Surv 2016; 49 (01) 1-36
  • 11 Lee CH, Yoon H-J. Medical big data: promise and challenges. Kidney Res Clin Pract 2017; 36 (01) 3-11
  • 12 Wang Y, Kung L, Byrd TA. Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol Forecast Soc Change 2018; 126: 3-13
  • 13 Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J 2017; 38 (23) 1805-1814
  • 14 Liu F, Zhou Z, Samsonov A. et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology 2018; 289 (01) 160-169
  • 15 Madelin G, Poidevin F, Makrymallis A, Regatte RR. Classification of sodium MRI data of cartilage using machine learning. Magn Reson Med 2015; 74 (05) 1435-1448
  • 16 Zhang K, Lu W, Marziliano P. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Magn Reson Imaging 2013; 31 (10) 1731-1743
  • 17 Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961; 43-B (04) 752-757
  • 18 Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 58-69
  • 19 Spahn G, Mückley T, Klinger HM, Hofmann GO. Whole-Organ Arthroscopic Knee Score (WOAKS). BMC Musculoskelet Disord 2008; 9 (01) 155
  • 20 Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 2008; 67 (02) 206-211
  • 21 Peterfy CG, Guermazi A, Zaim S. et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12 (03) 177-190
  • 22 Kornaat PR, Ceulemans RY, Kroon HM. et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)--inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol 2005; 34 (02) 95-102
  • 23 Hunter DJ, Guermazi A, Lo GH. et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 2011; 19 (08) 990-1002
  • 24 Lewandrowski KU, Ekkernkamp A, Dávid A, Muhr G, Schollmeier G. Classification of articular cartilage lesions of the knee at arthroscopy. Am J Knee Surg 1996; 9 (03) 121-128
  • 25 O'Connor MA, Palaniappan M, Khan N, Bruce CE. Osteochondritis dissecans of the knee in children. A comparison of MRI and arthroscopic findings. J Bone Joint Surg Br 2002; 84 (02) 258-262
  • 26 Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003; 85-A (02) (Suppl. 02) 58-69
  • 27 Hughes JA, Cook JV, Churchill MA, Warren ME. Juvenile osteochondritis dissecans: a 5-year review of the natural history using clinical and MRI evaluation. Pediatr Radiol 2003; 33 (06) 410-417
  • 28 Giurea M, Aichroth PM, Duri Z. Classification of articular cartilage lesions of the knee at arthroscopy. Knee 1998; 5 (03) 159-164
  • 29 Ficat RP, Philippe J, Hungerford DS. Chondromalacia patellae: a system of classification. Clin Orthop Relat Res 1979; (144) 55-62
  • 30 Bentley G, Dowd G. Current concepts of etiology and treatment of chondromalacia patellae. Clin Orthop Relat Res 1984; (189) 209-228
  • 31 Casscells SW. Gross pathological changes in the knee joint of the aged individual: a study of 300 cases. Clin Orthop Relat Res 1978; (132) 225-232
  • 32 Goodfellow J, Hungerford DS, Woods C. Patello-femoral joint mechanics and pathology. 2. Chondromalacia patellae. J Bone Joint Surg Br 1976; 58 (03) 291-299
  • 33 Insall J, Falvo KA, Wise DW. Chondromalacia patellae. A prospective study. J Bone Joint Surg Am 1976; 58 (01) 1-8
  • 34 Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012; 64 (06) 1697-1707
  • 35 Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 2014; 28 (01) 5-15
  • 36 Thomas AC, Hubbard-Turner T, Wikstrom EA, Palmieri-Smith RM. Epidemiology of posttraumatic osteoarthritis. J Athl Train 2017; 52 (06) 491-496
  • 37 Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med 2010; 26 (03) 355-369
  • 38 Michael JW, Schlüter-Brust KU, Eysel P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee [published correction appears in Dtsch Arztebl Int. 2010;107(16):294]. Dtsch Arztebl Int. 2010;107(09):152–162
  • 39 Davies-Tuck ML, Wluka AE, Wang Y. et al. The natural history of cartilage defects in people with knee osteoarthritis. Osteoarthritis Cartilage 2008; 16 (03) 337-342
  • 40 Gersing AS, Schwaiger BJ, Nevitt MC. et al. Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the Osteoarthritis Initiative. Radiology 2017; 284 (02) 508-520
  • 41 Ackerman IN, Osborne RH. Obesity and increased burden of hip and knee joint disease in Australia: Results from a national survey. BMC Musculoskelet Disord 2012;13:254
  • 42 Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 1998; 28 (04) 192-202
  • 43 Thompson KA, Bulls HW, Sibille KT. et al. Optimism and psychological resilience are beneficially associated with measures of clinical and experimental pain in adults with or at risk for knee osteoarthritis. Clin J Pain 2018; 34 (12) 1164-1172
  • 44 Rucinski K, Cook JL, Crecelius CR, Stucky R, Stannard JP. Effects of compliance with procedure-specific postoperative rehabilitation protocols on initial outcomes after osteochondral and meniscal allograft transplantation in the knee. Orthop J Sports Med 2019; 7 (11) 2325967119884291
  • 45 Hayden R, Rucinski K, Crecelius CR, Stucky R, Stannard JP, Cook JL. Outcomes associated with behavioral evaluation and counseling for patients undergoing orthopaedic surgery - a systematic review. J Orthop 2020; 21: 178-182
  • 46 Pham T, van der Heijde D, Altman RD. et al. OMERACT-OARSI initiative: Osteoarthritis Research Society International set of responder criteria for osteoarthritis clinical trials revisited. Osteoarthritis Cartilage 2004; 12 (05) 389-399
  • 47 Bellamy N, Kirwan J, Boers M. et al. Recommendations for a core set of outcome measures for future phase III clinical trials in knee, hip, and hand osteoarthritis. Consensus development at OMERACT III. J Rheumatol 1997; 24 (04) 799-802
  • 48 Boers M, Kirwan JR, Wells G. et al. Developing core outcome measurement sets for clinical trials: OMERACT filter 2.0. J Clin Epidemiol 2014; 67 (07) 745-753
  • 49 Singh JA, Dohm M, Sprowson AP. et al. Outcome domains and measures in total joint replacement clinical trials: can we harmonize them? An OMERACT collaborative initiative. J Rheumatol 2015; 42 (12) 2496-2502
  • 50 Singh JA, Dowsey M, Choong PF. Patient Endorsement of the Outcome Measures in Rheumatology (OMERACT) Total Joint Replacement (TJR) clinical trial draft core domain set. BMC Musculoskelet Disord 2017; 18 (01) 111
  • 51 Revicki D, Hays RD, Cella D, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol 2008; 61 (02) 102-109
  • 52 Long MJ, Papi E, Duffell LD, McGregor AH. Predicting knee osteoarthritis risk in injured populations. Clin Biomech (Bristol, Avon) 2017; 47: 87-95
  • 53 McConnell S, Kolopack P, Davis AM. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): a review of its utility and measurement properties. Arthritis Rheum 2001; 45 (05) 453-461
  • 54 McAlindon TE, Driban JB, Henrotin Y. et al. OARSI clinical trials recommendations: design, conduct, and reporting of clinical trials for knee osteoarthritis. Osteoarthritis Cartilage 2015; 23 (05) 747-760
  • 55 Kloppenburg M, Maheu E, Kraus VB. , et al; OARSI Hand Clinical Trial Recommendations Work Group. OARSI clinical trials recommendations: design and conduct of clinical trials for hand osteoarthritis. Osteoarthritis Cartilage 2015; 23 (05) 772-786
  • 56 Graham B, Green A, James M, Katz J, Swiontkowski M. Measuring patient satisfaction in orthopaedic surgery. J Bone Joint Surg Am 2015; 97 (01) 80-84
  • 57 Forsythe LP, Carman KL, Szydlowski V. et al. Patient engagement in research: early findings from the Patient-Centered Outcomes Research Institute. Health Aff (Millwood) 2019; 38 (03) 359-367
  • 58 Afara IO, Sarin JK, Ojanen S. et al. Machine learning classification of articular cartilage integrity using near infrared spectroscopy. Cel Mol Bioeng 2020; 13: 219-228
  • 59 Minciullo L, Bromiley PA, Felson DT, Cootes TF. Indecisive trees for classification and prediction of knee osteoarthritis. In: Wang Q, Shi Y, Suk H-I, Suzuki K. , eds. Machine Learning in Medical Imaging. Vol 10541. Cham: Springer International Publishing; 2017: 283-290
  • 60 Zheng T, Xie W, Xu L. et al. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Inform 2017; 97: 120-127
  • 61 Kerkhof HJM, Bierma-Zeinstra SMA, Arden NK. et al. Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors. Ann Rheum Dis 2014; 73 (12) 2116-2121
  • 62 Kinds MB, Marijnissen ACA, Vincken KL. et al. Evaluation of separate quantitative radiographic features adds to the prediction of incident radiographic osteoarthritis in individuals with recent onset of knee pain: 5-year follow-up in the CHECK cohort. Osteoarthritis Cartilage 2012; 20 (06) 548-556
  • 63 Yoo TK, Kim DW, Choi SB, Oh E, Park JS. Simple scoring system and artificial neural network for knee osteoarthritis risk prediction: a cross-sectional study. PLoS ONE 2016; 11 (02) e0148724
  • 64 Lazzarini N, Runhaar J, Bay-Jensen AC. et al. A machine learning approach for the identification of new biomarkers for knee osteoarthritis development in overweight and obese women. Osteoarthritis Cartilage 2017; 25 (12) 2014-2021
  • 65 Watt EW, Bui AAT. Evaluation of a dynamic bayesian belief network to predict osteoarthritic knee pain using data from the Osteoarthritis Initiative. AMIA Annu Symp Proc 2008; 2008: 788-792
  • 66 Ashinsky BG, Coletta CE, Bouhrara M. et al. Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging. Osteoarthritis Cartilage 2015; 23 (10) 1704-1712
  • 67 Schett G, Kiechl S, Bonora E. et al. Vascular cell adhesion molecule 1 as a predictor of severe osteoarthritis of the hip and knee joints. Arthritis Rheum 2009; 60 (08) 2381-2389
  • 68 Schett G, Zwerina J, Axmann R, Willeit J, Stefan K. Risk prediction for severe osteoarthritis. Ann Rheum Dis 2010; 69 (08) 1573-1574
  • 69 OAI. . Accessed April 8, 2020 at: https://nda.nih.gov/oai/
  • 70 Mukherjee S, Nazemi M, Jonkers I, Geris L. Use of computational modeling to study joint degeneration: a review. Front Bioeng Biotechnol 2020; 8: 93
  • 71 Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism 2017; 69S: S36-S40
  • 72 Jamshidi A, Pelletier J-P, Martel-Pelletier J. Machine-learning-based patient-specific prediction models for knee osteoarthritis. Nat Rev Rheumatol 2019; 15 (01) 49-60
  • 73 Dhall D, Kaur R, Juneja M. Machine learning: a review of the algorithms and its applications. In: Singh PK, Kar AK, Singh Y, Kolekar MH, Tanwar S. , eds. Proceedings of ICRIC 2019: Recent Innovations in Computing (Lecture Notes in Electrical Engineering). Cham: Springer International Publishing; 2020: 47-63
  • 74 Guerra L, McGarry LM, Robles V, Bielza C, Larrañaga P, Yuste R. Comparison between supervised and unsupervised classifications of neuronal cell types: a case study. Dev Neurobiol 2011; 71 (01) 71-82
  • 75 Mao Y, Yang Y. A wrapper feature subset selection method based on randomized search and multilayer structure. BioMed Res Int 2019; 2019: 9864213
  • 76 Lee I-H, Lushington GH, Visvanathan M. A filter-based feature selection approach for identifying potential biomarkers for lung cancer. J Clin Bioinforma 2011; 1 (01) 11
  • 77 Tohka J, Moradi E, Huttunen H. ; Alzheimer's Disease Neuroimaging Initiative. Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia. Neuroinformatics 2016; 14 (03) 279-296
  • 78 Mansbridge N, Mitsch J, Bollard N. et al. Feature selection and comparison of machine learning algorithms in classification of grazing and rumination behaviour in sheep. Sensors (Basel) 2018; 18 (10) E3532
  • 79 Nalband S, Sundar A, Prince AA, Agarwal A. Feature selection and classification methodology for the detection of knee-joint disorders. Comput Methods Programs Biomed 2016; 127: 94-104
  • 80 Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: A review. Neurocomputing 2016; 187: 27-48
  • 81 Swan AL, Stekel DJ, Hodgman C. et al. A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data. BMC Genomics 2015; 16 (Suppl. 01) S2
  • 82 Deveza LA, Melo L, Yamato TP, Mills K, Ravi V, Hunter DJ. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis Cartilage 2017; 25 (12) 1926-1941
  • 83 Blagojevic M, Jinks C, Jeffery A, Jordan KP. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 2010; 18 (01) 24-33
  • 84 Losina E, Klara K, Michl GL, Collins JE, Katz JN. Development and feasibility of a personalized, interactive risk calculator for knee osteoarthritis. BMC Musculoskelet Disord 2015; 16: 312
  • 85 Mirza B, Wang W, Wang J, Choi H, Chung NC, Ping P. Machine learning and integrative analysis of biomedical big data. Genes (Basel) 2019; 10 (02) 87
  • 86 Cao XH, Stojkovic I, Obradovic Z. A robust data scaling algorithm to improve classification accuracies in biomedical data. BMC Bioinformatics 2016; 17 (01) 359
  • 87 Linn KA, Gaonkar B, Satterthwaite TD, Doshi J, Davatzikos C, Shinohara RT. Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine. Neuroimage 2016; 132: 157-166
  • 88 Jerez JM, Molina I, García-Laencina PJ. et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med 2010; 50 (02) 105-115
  • 89 Jayalakshmi T, Santhakumaran A. Statistical normalization and back propagation for classification. IJCTE 2011; 3: 89-93
  • 90 Ashinsky BG, Bouhrara M, Coletta CE. et al. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the Osteoarthritis Initiative. J Orthop Res 2017; 35 (10) 2243-2250
  • 91 Steyerberg EW, Harrell Jr FE. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol 2016; 69: 245-247
  • 92 Siontis GCM, Tzoulaki I, Castaldi PJ, Ioannidis JPA. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J Clin Epidemiol 2015; 68 (01) 25-34
  • 93 Tugwell P, Knottnerus JA. Transferability/generalizability deserves more attention in ‘retest’ studies in diagnosis and prognosis. J Clin Epidemiol 2015; 68 (03) 235-236
  • 94 Tugwell P, Knottnerus JA. Clinical prediction models are not being validated. J Clin Epidemiol 2015; 68 (01) 1-2
  • 95 Zou J, Han Y, So S-S. Overview of artificial neural networks. In: Livingstone DJ. , ed. Artificial Neural Networks: Methods and Applications. Totowa, NJ: Humana Press; 2009: 14-22
  • 96 Jing Y, Bian Y, Hu Z, Wang L, Xie X-QS. Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J 2018; 20 (03) 58
  • 97 Cao C, Liu F, Tan H. et al. Deep learning and its applications in biomedicine. Genomics Proteomics Bioinformatics 2018; 16 (01) 17-32
  • 98 Hu L-Y, Huang M-W, Ke S-W, Tsai C-F. The distance function effect on k-nearest neighbor classification for medical datasets. Springerplus 2016; 5 (01) 1304
  • 99 Wang A, An N, Chen G, Li L, Alterovitz G. Accelerating wrapper-based feature selection with K-nearest-neighbor. Knowl Based Syst 2015; 83: 81-91
  • 100 Xie X, Ho JWK, Murphy C, Kaiser G, Xu B, Chen TY. Testing and Validating Machine Learning Classifiers by Metamorphic Testing. J Syst Softw 2011; 84 (04) 544-558
  • 101 Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol Methods 2009; 14 (04) 323-348
  • 102 Denisko D, Hoffman MM. Classification and interaction in random forests. Proc Natl Acad Sci U S A 2018; 115 (08) 1690-1692
  • 103 Huber M, Kurz C, Leidl R. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised machine learning. BMC Med Inform Decis Mak 2019; 19 (01) 3
  • 104 Thanh Noi P, Kappas M. Comparison of Random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors (Basel) 2017; 18 (01) E18