Semin Musculoskelet Radiol 2020; 24(05): 479-487
DOI: 10.1055/s-0040-1709428
Review Article

Dentomaxillofacial CBCT: Clinical Challenges for Indication-oriented Imaging

1   Division of Oral Radiology, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
2   OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
,
2   OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
,
2   OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
4   Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
,
1   Division of Oral Radiology, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
,
2   OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
3   Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
› Author Affiliations
Funding Source This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), Finance Code 001.

Abstract

This critical review discusses the clinical challenges for patient-specific and indication-oriented dentomaxillofacial cone beam computed tomography (CBCT). Large variations among units and protocols may lead to variable degrees of diagnostic and three-dimensional model accuracy, impacting both specific diagnostic tasks and treatment planning. Particular indications, whether diagnostic or therapeutic, may give rise to very specific challenges with regard to CBCT unit and parameter setup, considering the required image quality, segmentation accuracy, and artifact level. Considering that dental materials are in the field of view needed for diagnosis or treatment planning, artifact expression is a dominant factor in proper CBCT selection. The heterogeneity of dental CBCT units and performances may highly impact the scientific results. Thus research findings cannot be simply generalized as published evidence, and a demonstrated clinical applicability for a specific indication should not be simply extrapolated from one CBCT unit to another.



Publication History

Article published online:
09 October 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Sedentexct. Radiation protection 172. Cone beam CT for dental and maxillofacial radiology: evidence-based guidelines. Available at: http://www.sedentexct.eu/files/radiation_protection_172.pdf . Accessed January 27, 2020
  • 2 Oenning AC, Pauwels R, Stratis A. , et al; Dimitra research group. Halve the dose while maintaining image quality in paediatric cone beam CT. Sci Rep 2019; 9 (01) 5521
  • 3 Jacobs R. Dental cone beam CT and its justified use in oral health care. JBR-BTR 2011; 94 (05) 254-265
  • 4 Gaêta-Araujo H, Alzoubi T, de Faria Vasconcelos K. et al. Cone-beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Ahead of print
  • 5 Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol 2015; 44 (01) 20140224
  • 6 Brüllmann D, Schulze RK. Spatial resolution in CBCT machines for dental/maxillofacial applications—what do we know today?. Dentomaxillofac Radiol 2015; 44 (01) 20140204
  • 7 Vasconcelos KF, Nicolielo LF, Nascimento MC. et al. Artefact expression associated with several cone-beam computed tomographic machines when imaging root filled teeth. Int Endod J 2015; 48 (10) 994-1000
  • 8 Codari M, de Faria Vasconcelos K, Ferreira Pinheiro Nicolielo L, Haiter Neto F, Jacobs R. Quantitative evaluation of metal artifacts using different CBCT devices, high-density materials and field of views. Clin Oral Implants Res 2017; 28 (12) 1509-1514
  • 9 Schulze R, Heil U, Gross D. et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol 2011; 40 (05) 265-273
  • 10 Kamburoglu K, Kolsuz E, Murat S, Eren H, Yüksel S, Paksoy CS. Assessment of buccal marginal alveolar peri-implant and periodontal defects using a cone beam CT system with and without the application of metal artefact reduction mode. Dentomaxillofac Radiol 2013; 42 (08) 20130176
  • 11 Bechara B, Alex McMahan C, Moore WS, Noujeim M, Teixeira FB, Geha H. Cone beam CT scans with and without artefact reduction in root fracture detection of endodontically treated teeth. Dentomaxillofac Radiol 2013; 42 (05) 20120245
  • 12 Vasconcelos KF, Codari M, Queiroz PM. et al. The performance of metal artifact reduction algorithms in cone beam computed tomography images considering the effects of materials, metal positions, and fields of view. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127 (01) 71-76
  • 13 Stratis A, Zhang G, Jacobs R, Bogaerts R, Bosmans H. The growing concern of radiation dose in paediatric dental and maxillofacial CBCT: an easy guide for daily practice. Eur Radiol 2019; 29 (12) 7009-7018
  • 14 Pauwels R, Beinsberger J, Collaert B. , et al; SEDENTEXCT Project Consortium. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol 2012; 81 (02) 267-271
  • 15 Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM. Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health 2018; 18: 88
  • 16 Van Steenberghe D, Malevez C, Van Cleynenbreugel J. et al. Accuracy of drilling guides for transfer from three-dimensional CT-based planning to placement of zygoma implants in human cadavers. Clin Oral Implants Res 2003; 14 (01) 131-136
  • 17 Harris D, Horner K, Gröndahl K. et al. E.A.O. guidelines for the use of diagnostic imaging in implant dentistry 2011. A consensus workshop organized by the European Association for Osseointegration at the Medical University of Warsaw. Clin Oral Implants Res 2012; 23 (11) 1243-1253
  • 18 Tyndall DA, Price JB, Tetradis S, Ganz SD, Hildebolt C, Scarfe WC. American Academy of Oral and Maxillofacial Radiology. Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113 (06) 817-826
  • 19 Jacobs R, Quirynen M. Dental cone beam computed tomography: justification for use in planning oral implant placement. Periodontol 2000 2014; 66 (01) 203-213
  • 20 Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants 2014; 29: 55-77
  • 21 Vercruyssen M, Laleman I, Jacobs R, Quirynen M. Computer-supported implant planning and guided surgery: a narrative review. Clin Oral Implants Res 2015; 26 (Suppl. 11) 69-76
  • 22 Joda T, Brägger U, Gallucci G. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients. Int J Oral Maxillofac Implants 2015; 30 (02) 330-337
  • 23 Vanderstuyft T, Tarce M, Sanaan B, Jacobs R, de Faria Vasconcelos K, Quirynen M. Inaccuracy of buccal bone thickness estimation on cone-beam CT due to implant blooming: an ex-vivo study. J Clin Periodontol 2019; 46 (11) 1134-1143
  • 24 Patel S, Brown J, Semper M, Abella F, Mannocci F. European Society of Endodontology position statement: Use of cone beam computed tomography in Endodontics: European Society of Endodontology (ESE) developed by. Int Endod J 2019; 52 (12) 1675-1678
  • 25 Hassan B, Metska ME, Ozok AR, van der Stelt P, Wesselink PR. Comparison of five cone beam computed tomography systems for the detection of vertical root fractures. J Endod 2010; 36 (01) 126-129
  • 26 Melo SL, Haiter-Neto F, Correa LR, Scarfe WC, Farman AG. Comparative diagnostic yield of cone beam CT reconstruction using various software programs on the detection of vertical root fractures. Dentomaxillofac Radiol 2013; 42 (09) 20120459
  • 27 da Silveira PF, Vizzotto MB, Liedke GS, da Silveira HL, Montagner F, da Silveira HE. Detection of vertical root fractures by conventional radiographic examination and cone beam computed tomography—an in vitro analysis. Dent Traumatol 2013; 29 (01) 41-46
  • 28 Khedmat S, Rouhi N, Drage N, Shokouhinejad N, Nekoofar MH. Evaluation of three imaging techniques for the detection of vertical root fractures in the absence and presence of gutta-percha root fillings. Int Endod J 2012; 45 (11) 1004-1009
  • 29 Patel S, Brady E, Wilson R, Brown J, Mannocci F. The detection of vertical root fractures in root filled teeth with periapical radiographs and CBCT scans. Int Endod J 2013; 46 (12) 1140-1152
  • 30 Costa FF, Gaia BF, Umetsubo OS, Cavalcanti MG. Detection of horizontal root fracture with small-volume cone-beam computed tomography in the presence and absence of intracanal metallic post. J Endod 2011; 37 (10) 1456-1459
  • 31 Costa FF, Gaia BF, Umetsubo OS, Pinheiro LR, Tortamano IP, Cavalcanti MG. Use of large-volume cone-beam computed tomography in identification and localization of horizontal root fracture in the presence and absence of intracanal metallic post. J Endod 2012; 38 (06) 856-859
  • 32 Kajan ZD, Taromsari M. Value of cone beam CT in detection of dental root fractures. Dentomaxillofac Radiol 2012; 41 (01) 3-10
  • 33 Kim JH, Arita ES, Pinheiro LR, Yoshimoto M, Watanabe PCA, Cortes ARG. Computed tomographic artifacts in maxillofacial surgery. J Craniofac Surg 2018; 29 (01) e78-e80
  • 34 Kapila SD, Nervina JM. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofac Radiol 2015; 44 (01) 20140282
  • 35 De Grauwe A, Ayaz I, Shujaat S. et al. CBCT in orthodontics: a systematic review on justification of CBCT in a paediatric population prior to orthodontic treatment. Eur J Orthod 2019; 41 (04) 381-389
  • 36 Hirschinger V, Hanke S, Hirschfelder U, Hofmann E. Artifacts in orthodontic bracket systems in cone-beam computed tomography and multislice computed tomography. J Orofac Orthop 2015; 76 (02) 152-160 , 162–163
  • 37 Liang X, Jacobs R, Hassan B. et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) Part I. On subjective image quality. Eur J Radiol 2010; 75 (02) 265-269
  • 38 Liang X, Lambrichts I, Sun Y. et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT). Part II: On 3D model accuracy. Eur J Radiol 2010; 75 (02) 270-274
  • 39 Nackaerts O, Depypere M, Zhang G, Vandenberghe B, Maes F, Jacobs R. SEDENTEXCT Consortium. Segmentation of trabecular jaw bone on cone beam CT datasets. Clin Implant Dent Relat Res 2015; 17 (06) 1082-1091
  • 40 Shaheen E, Khalil W, Ezeldeen M. et al. Accuracy of segmentation of tooth structures using 3 different CBCT machines. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 123 (01) 123-128
  • 41 Khalil W, EzEldeen M, Van De Casteele E. et al. Validation of cone beam computed tomography-based tooth printing using different three-dimensional printing technologies. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121 (03) 307-315
  • 42 Maret D, Telmon N, Peters OA. et al. Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT. Dentomaxillofac Radiol 2012; 41 (08) 649-655
  • 43 Jain S, Choudhary K, Nagi R, Shukla S, Kaur N, Grover D. New evolution of cone-beam computed tomography in dentistry: combining digital technologies. Imaging Sci Dent 2019; 49 (03) 179-190
  • 44 Prell D, Kyriakou Y, Beister M, Kalender WA. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography. Phys Med Biol 2009; 7 54 (21) 6575-6591
  • 45 de-Azevedo-Vaz SL, Peyneau PD, Ramirez-Sotelo LR, Vasconcelos KdeF, Campos PS, Haiter-Neto F. Efficacy of a cone beam computed tomography metal artifact reduction algorithm for the detection of peri-implant fenestrations and dehiscences. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121 (05) 550-556
  • 46 Yeung AWK, Azevedo B, Scarfe WC, Bornstein MM. Patient motion image artifacts can be minimized and re-exposure avoided by selective removal of a sequence of basis images from cone beam computed tomography data sets: a case series. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129 (02) e212-e223
  • 47 Men K, Dai J, Chen X, Li M, Zhang K, Huang P. Dual-energy imaging method to improve the image quality and the accuracy of dose calculation for cone-beam computed tomography. Phys Med 2017; 36: 110-118
  • 48 Hoeschen C. Use of artificial intelligence for image reconstruction [in German]. Radiologe 2020; 60 (01) 15-23
  • 49 Zhu G, Jiang B, Tong L, Xie Y, Zaharchuk G, Wintermark M. Applications of deep learning to neuro-imaging techniques. Front Neurol 2019; 10: 869
  • 50 Liang K, Zhang L, Yang H, Yang Y, Chen Z, Xing Y. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning. Med Phys 2019; 46 (12) e823-e834
  • 51 Hegazy MAA, Cho MH, Cho MH, Lee SY. U-net based metal segmentation on projection domain for metal artifact reduction in dental CT. Biomed Eng Lett 2019; 9 (03) 375-385