Semin Thromb Hemost 2020; 46(03): 342-356
DOI: 10.1055/s-0040-1708841
Review Article

Platelets in Advanced Chronic Kidney Disease: Two Sides of the Coin

Prof. Dr. med. Jens Lutz
1   Clinic of Internal Medicine Nephrology - Infectious Diseases, Central Rhine Hospital Group, Koblenz, Germany
,
PD Dr. rer. nat. Kerstin Jurk
2   Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
› Author Affiliations

Abstract

Rates of thrombosis and bleeding episodes are both increased in patients with advanced chronic kidney disease (CKD). The pathogenic mechanisms of thrombosis in these patients include platelet activation, increased formation of platelet-leukocyte conjugates, and platelet-derived microparticles, as well as effects of uremic toxins on platelets. On the other side of the coin, platelet hyporeactivity mediated by uremic toxins and anemia contributes to the increased bleeding risk in advanced CKD. Platelets also contribute to the inflammatory environment, thus increasing the risk of cardiovascular diseases in these patients. This review provides insights into the altered platelet function in advanced stages of CKD and their relationship with risks of thrombosis and bleeding. Particularly, the effect of dialysis on platelets will be discussed. Furthermore, therapeutic options with respect to thrombotic disorders as well as bleeding in patients with CKD are reviewed.



Publication History

Publication Date:
07 April 2020 (online)

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lutz J, Menke J, Sollinger D, Schinzel H, Thürmel K. Haemostasis in chronic kidney disease. Nephrol Dial Transplant 2014; 29 (01) 29-40
  • 2 Boccardo P, Remuzzi G, Galbusera M. Platelet dysfunction in renal failure. Semin Thromb Hemost 2004; 30 (05) 579-589
  • 3 Yang K, Du C, Wang X. et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice. Blood 2017; 129 (19) 2667-2679
  • 4 Melgaard L, Overvad TF, Skjøth F, Christensen JH, Larsen TB, Lip GYH. Risk of stroke and bleeding in patients with heart failure and chronic kidney disease: a nationwide cohort study. ESC Heart Fail 2018; 5 (02) 319-326
  • 5 Molnar AO, Bota SE, McArthur E. et al. Risk and complications of venous thromboembolism in dialysis patients. Nephrol Dial Transplant 2018; 33 (05) 874-880
  • 6 Ocak G, Noordzij M, Rookmaaker MB. et al. Mortality due to bleeding, myocardial infarction and stroke in dialysis patients. J Thromb Haemost 2018; 16 (10) 1953-1963
  • 7 Ando M, Iwata A, Ozeki Y, Tsuchiya K, Akiba T, Nihei H. Circulating platelet-derived microparticles with procoagulant activity may be a potential cause of thrombosis in uremic patients. Kidney Int 2002; 62 (05) 1757-1763
  • 8 Landray MJ, Wheeler DC, Lip GY. et al. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) study. Am J Kidney Dis 2004; 43 (02) 244-253
  • 9 Shlipak MG, Fried LF, Crump C. et al. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 2003; 107 (01) 87-92
  • 10 Stenvinkel P, Alvestrand A. Inflammation in end-stage renal disease: sources, consequences, and therapy. Semin Dial 2002; 15 (05) 329-337
  • 11 Tripepi G, Mallamaci F, Zoccali C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J Am Soc Nephrol 2005; 16 (Suppl. 01) S83-S88
  • 12 Glorieux G, Cohen G, Jankowski J, Vanholder R. Platelet/leukocyte activation, inflammation, and uremia. Semin Dial 2009; 22 (04) 423-427
  • 13 Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis 2016; 67 (03) 483-498
  • 14 Konopelski P, Ufnal M. Indoles - gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr Drug Metab 2018; 19 (10) 883-890
  • 15 Jovanovich A, Isakova T, Stubbs J. Microbiome and cardiovascular disease in CKD. Clin J Am Soc Nephrol 2018; 13 (10) 1598-1604
  • 16 Karbowska M, Kaminski TW, Marcinczyk N. et al. The uremic toxin indoxyl sulfate accelerates thrombotic response after vascular injury in animal models. Toxins (Basel) 2017; 9 (07) E229
  • 17 Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593 (15) 1879-1900
  • 18 Yang K, Nie L, Huang Y. et al. Amelioration of uremic toxin indoxyl sulfate-induced endothelial cell dysfunction by Klotho protein. Toxicol Lett 2012; 215 (02) 77-83
  • 19 Karbowska M, Kaminski TW, Znorko B. et al. Indoxyl sulfate promotes arterial thrombosis in rat model via increased levels of complex TF/VII, PAI-1, platelet activation as well as decreased contents of SIRT1 and SIRT3. Front Physiol 2018; 9: 1623
  • 20 Schoorl M, Schoorl M, Nubé MJ, Bartels PC. Coagulation activation, depletion of platelet granules and endothelial integrity in case of uraemia and haemodialysis treatment. BMC Nephrol 2013; 14: 72
  • 21 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115 (12) 3378-3384
  • 22 Sirolli V, Strizzi L, Di Stante S, Robuffo I, Procopio A, Bonomini M. Platelet activation and platelet-erythrocyte aggregates in end-stage renal disease patients on hemodialysis. Thromb Haemost 2001; 86 (03) 834-839
  • 23 Furie B, Furie BC, Flaumenhaft R. A journey with platelet P-selectin: the molecular basis of granule secretion, signalling and cell adhesion. Thromb Haemost 2001; 86 (01) 214-221
  • 24 Wagner DD. New links between inflammation and thrombosis. Arterioscler Thromb Vasc Biol 2005; 25 (07) 1321-1324
  • 25 Galbusera MRG, Ondei P. Hemostatic abnormalities in renal disease. In: Marder VJ, Aird WC, Bennett JS, Schulman S, White II GC. ed. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia, PA: Lippincott Williams & Wilkins; 2012: 1491-1497
  • 26 Huang MJ, Wei RB, Wang Y. et al. Blood coagulation system in patients with chronic kidney disease: a prospective observational study. BMJ Open 2017; 7 (05) e014294
  • 27 Bonomini M, Sirolli V, Dottori S, Amoroso L, Di Liberato L, Arduini A. L-carnitine inhibits a subset of platelet activation responses in chronic uraemia. Nephrol Dial Transplant 2007; 22 (09) 2623-2629
  • 28 Bonomini M, Dottori S, Amoroso L, Arduini A, Sirolli V. Increased platelet phosphatidylserine exposure and caspase activation in chronic uremia. J Thromb Haemost 2004; 2 (08) 1275-1281
  • 29 Li M, Wang Z, Ma T. et al. Enhanced platelet apoptosis in chronic uremic patients. Ren Fail 2014; 36 (06) 847-853
  • 30 Owens III AP, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res 2011; 108 (10) 1284-1297
  • 31 Milioli M, Ibáñez-Vea M, Sidoli S, Palmisano G, Careri M, Larsen MR. Quantitative proteomics analysis of platelet-derived microparticles reveals distinct protein signatures when stimulated by different physiological agonists. J Proteomics 2015; 121: 56-66
  • 32 Sinauridze EI, Kireev DA, Popenko NY. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97 (03) 425-434
  • 33 Goubran HA, Burnouf T, Stakiw J, Seghatchian J. Platelet microparticle: a sensitive physiological “fine tuning” balancing factor in health and disease. Transfus Apheresis Sci 2015; 52 (01) 12-18
  • 34 Varon D, Shai E. Platelets and their microparticles as key players in pathophysiological responses. J Thromb Haemost 2015; 13 (Suppl. 01) S40-S46
  • 35 Sims PJ, Faioni EM, Wiedmer T, Shattil SJ. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 1988; 263 (34) 18205-18212
  • 36 Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem 1989; 264 (29) 17049-17057
  • 37 Geiser T, Sturzenegger M, Genewein U, Haeberli A, Beer JH. Mechanisms of cerebrovascular events as assessed by procoagulant activity, cerebral microemboli, and platelet microparticles in patients with prosthetic heart valves. Stroke 1998; 29 (09) 1770-1777
  • 38 Katopodis JN, Kolodny L, Jy W. et al. Platelet microparticles and calcium homeostasis in acute coronary ischemias. Am J Hematol 1997; 54 (02) 95-101
  • 39 Cecchetti L, Tolley ND, Michetti N, Bury L, Weyrich AS, Gresele P. Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events. Blood 2011; 118 (07) 1903-1911
  • 40 Plé H, Maltais M, Corduan A, Rousseau G, Madore F, Provost P. Alteration of the platelet transcriptome in chronic kidney disease. Thromb Haemost 2012; 108 (04) 605-615
  • 41 Schubert P, Devine DV. De novo protein synthesis in mature platelets: a consideration for transfusion medicine. Vox Sang 2010; 99 (02) 112-122
  • 42 Schubert S, Weyrich AS, Rowley JW. A tour through the transcriptional landscape of platelets. Blood 2014; 124 (04) 493-502
  • 43 Marques M, Sacristán D, Mateos-Cáceres PJ. et al. Different protein expression in normal and dysfunctional platelets from uremic patients. J Nephrol 2010; 23 (01) 90-101
  • 44 Walkowiak B, Kaminska M, Okrój W. et al. The blood platelet proteome is changed in UREMIC patients. Platelets 2007; 18 (05) 386-388
  • 45 Weyrich AS, Denis MM, Schwertz H. et al. mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets. Blood 2007; 109 (05) 1975-1983
  • 46 Zhu P, Tang XF, Xu JJ. et al. Platelet reactivity in patients with chronic kidney disease undergoing percutaneous coronary intervention. Platelets 2019; 30 (07) 901-907
  • 47 Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev 2015; 29 (03) 153-162
  • 48 Pintucci G, Froum S, Pinnell J, Mignatti P, Rafii S, Green D. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Thromb Haemost 2002; 88 (05) 834-842
  • 49 Sheu JR, Fong TH, Liu CM. et al. Expression of matrix metalloproteinase-9 in human platelets: regulation of platelet activation in in vitro and in vivo studies. Br J Pharmacol 2004; 143 (01) 193-201
  • 50 Battinelli EM, Markens BA, Italiano Jr JE. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 2011; 118 (05) 1359-1369
  • 51 Radziwon-Balicka A, Moncada de la Rosa C, Jurasz P. Platelet-associated angiogenesis regulating factors: a pharmacological perspective. Can J Physiol Pharmacol 2012; 90 (06) 679-688
  • 52 Horowitz HI. Uremic toxins and platelet function. Arch Intern Med 1970; 126 (05) 823-826
  • 53 Horowitz HI, Stein IM, Cohen BD, White JG. Further studies on the platelet-inhibitory effect of guanidinosuccinic acid and its role in uremic bleeding. Am J Med 1970; 49 (03) 336-345
  • 54 Rabiner SF, Molinas F. The role of phenol and phenolic acids on the thrombocytopathy and defective platelet aggregation of patients with renal failure. Am J Med 1970; 49 (03) 346-351
  • 55 Remuzzi G, Livio M, Marchiaro G, Mecca G, de Gaetano G. Bleeding in renal failure: altered platelet function in chronic uraemia only partially corrected by haemodialysis. Nephron 1978; 22 (4-6): 347-353
  • 56 Benigni A, Boccardo P, Galbusera M. et al. Reversible activation defect of the platelet glycoprotein IIb-IIIa complex in patients with uremia. Am J Kidney Dis 1993; 22 (05) 668-676
  • 57 Di Minno G, Martinez J, McKean ML, De La Rosa J, Burke JF, Murphy S. Platelet dysfunction in uremia. Multifaceted defect partially corrected by dialysis. Am J Med 1985; 79 (05) 552-559
  • 58 Gawaz MP, Dobos G, Späth M, Schollmeyer P, Gurland HJ, Mujais SK. Impaired function of platelet membrane glycoprotein IIb-IIIa in end-stage renal disease. J Am Soc Nephrol 1994; 5 (01) 36-46
  • 59 Sreedhara R, Itagaki I, Lynn B, Hakim RM. Defective platelet aggregation in uremia is transiently worsened by hemodialysis. Am J Kidney Dis 1995; 25 (04) 555-563
  • 60 Remuzzi G, Marchesi D, Livio M. et al. Altered platelet and vascular prostaglandin-generation in patients with renal failure and prolonged bleeding times. Thromb Res 1978; 13 (06) 1007-1015
  • 61 Mekawy MA, Habashy DM, Abd El-Mohsen WA. Effect of hemodialysis on platelet function in end-stage renal disease Egyptian patients using in vitro closure time test (PFA-100 analyzer). Platelets 2015; 26 (05) 443-447
  • 62 Linthorst GE, Avis HJ, Levi M. Uremic thrombocytopathy is not about urea. J Am Soc Nephrol 2010; 21 (05) 753-755
  • 63 Eknoyan G, Brown III CH. Biochemical abnormalities of platelets in renal failure. Evidence for decreased platelet serotonin, adenosine diphosphate and Mg-dependent adenosine triphosphatase. Am J Nephrol 1981; 1 (01) 17-23
  • 64 Elshamaa MF, Elghoroury EA, Helmy A. Intradialytic and postdialytic platelet activation, increased platelet phosphatidylserine exposure and ultrastructural changes in platelets in children with chronic uremia. Blood Coagul Fibrinolysis 2009; 20 (04) 230-239
  • 65 Ware JA, Clark BA, Smith M, Salzman EW. Abnormalities of cytoplasmic Ca2+ in platelets from patients with uremia. Blood 1989; 73 (01) 172-176
  • 66 Schiffl H. Correlation of blood pressure in end-stage renal disease with platelet cytosolic free-calcium concentration. Klin Wochenschr 1990; 68 (14) 718-722
  • 67 Zhou XJ, Vaziri ND. Defective calcium signalling in uraemic platelets and its amelioration with long-term erythropoietin therapy. Nephrol Dial Transplant 2002; 17 (06) 992-997
  • 68 Smith MC, Dunn MJ. Impaired platelet thromboxane production in renal failure. Nephron 1981; 29 (3-4): 133-137
  • 69 Bloom A, Greaves M, Preston FE, Brown CB. Evidence against a platelet cyclooxygenase defect in uraemic subjects on chronic haemodialysis. Br J Haematol 1986; 62 (01) 143-149
  • 70 Frenette PS, Johnson RC, Hynes RO, Wagner DD. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci U S A 1995; 92 (16) 7450-7454
  • 71 André P, Denis CV, Ware J. et al. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood 2000; 96 (10) 3322-3328
  • 72 Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med 1998; 187 (03) 329-339
  • 73 Mezzano D, Tagle R, Panes O. et al. Hemostatic disorder of uremia: the platelet defect, main determinant of the prolonged bleeding time, is correlated with indices of activation of coagulation and fibrinolysis. Thromb Haemost 1996; 76 (03) 312-321
  • 74 Salvati F, Liani M. Role of platelet surface receptor abnormalities in the bleeding and thrombotic diathesis of uremic patients on hemodialysis and peritoneal dialysis. Int J Artif Organs 2001; 24 (03) 131-135
  • 75 Sloand EM, Sloand JA, Prodouz K. et al. Reduction of platelet glycoprotein Ib in uraemia. Br J Haematol 1991; 77 (03) 375-381
  • 76 Himmelfarb J, Nelson S, McMonagle E. et al. Elevated plasma glycocalicin levels and decreased ristocetin-induced platelet agglutination in hemodialysis patients. Am J Kidney Dis 1998; 32 (01) 132-138
  • 77 Díaz-Ricart M, Estebanell E, Cases A. et al. Abnormal platelet cytoskeletal assembly in hemodialyzed patients results in deficient tyrosine phosphorylation signaling. Kidney Int 2000; 57 (05) 1905-1914
  • 78 Janson PA, Jubelirer SJ, Weinstein MJ, Deykin D. Treatment of the bleeding tendency in uremia with cryoprecipitate. N Engl J Med 1980; 303 (23) 1318-1322
  • 79 Kaw D, Malhotra D. Platelet dysfunction and end-stage renal disease. Semin Dial 2006; 19 (04) 317-322
  • 80 Lee HK, Kim YJ, Jeong JU, Park JS, Chi HS, Kim SB. Desmopressin improves platelet dysfunction measured by in vitro closure time in uremic patients. Nephron Clin Pract 2010; 114 (04) c248-c252
  • 81 Moal V, Brunet P, Dou L, Morange S, Sampol J, Berland Y. Impaired expression of glycoproteins on resting and stimulated platelets in uraemic patients. Nephrol Dial Transplant 2003; 18 (09) 1834-1841
  • 82 Jurk K, Kehrel BE. Platelets: physiology and biochemistry. Semin Thromb Hemost 2005; 31 (04) 381-392
  • 83 Wratten ML, Tetta C, De Smet R. et al. Uremic ultrafiltrate inhibits platelet-activating factor synthesis. Blood Purif 1999; 17 (2-3): 134-141
  • 84 Sreedhara R, Itagaki I, Hakim RM. Uremic patients have decreased shear-induced platelet aggregation mediated by decreased availability of glycoprotein IIb-IIIa receptors. Am J Kidney Dis 1996; 27 (03) 355-364
  • 85 Sohal AS, Gangji AS, Crowther MA, Treleaven D. Uremic bleeding: pathophysiology and clinical risk factors. Thromb Res 2006; 118 (03) 417-422
  • 86 Noris M, Benigni A, Boccardo P. et al. Enhanced nitric oxide synthesis in uremia: implications for platelet dysfunction and dialysis hypotension. Kidney Int 1993; 44 (02) 445-450
  • 87 Kyrle PA, Stockenhuber F, Brenner B. et al. Evidence for an increased generation of prostacyclin in the microvasculature and an impairment of the platelet alpha-granule release in chronic renal failure. Thromb Haemost 1988; 60 (02) 205-208
  • 88 Defreyn G, Dauden MV, Machin SJ, Vermylen J. A plasma factor in uraemia which stimulates prostacyclin release from cultured endothelial cells. Thromb Res 1980; 19 (4-5): 695-699
  • 89 Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A 1990; 87 (13) 5193-5197
  • 90 Yokokawa K, Mankus R, Saklayen MG. et al. Increased nitric oxide production in patients with hypotension during hemodialysis. Ann Intern Med 1995; 123 (01) 35-37
  • 91 Remuzzi G, Perico N, Zoja C, Corna D, Macconi D, Viganò G. Role of endothelium-derived nitric oxide in the bleeding tendency of uremia. J Clin Invest 1990; 86 (05) 1768-1771
  • 92 Simon DI, Stamler JS, Loh E, Loscalzo J, Francis SA, Creager MA. Effect of nitric oxide synthase inhibition on bleeding time in humans. J Cardiovasc Pharmacol 1995; 26 (02) 339-342
  • 93 Jankowski J, van der Giet M, Jankowski V. et al. Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. J Clin Invest 2003; 112 (02) 256-264
  • 94 Makhoul S, Walter E, Pagel O. et al. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets. Nitric Oxide 2018; 76: 71-80
  • 95 Fernandez F, Goudable C, Sie P. et al. Low haematocrit and prolonged bleeding time in uraemic patients: effect of red cell transfusions. Br J Haematol 1985; 59 (01) 139-148
  • 96 Galbusera M, Remuzzi G, Boccardo P. Treatment of bleeding in dialysis patients. Semin Dial 2009; 22 (03) 279-286
  • 97 Howard AD, Moore Jr J, Welch PG, Gouge SF. Analysis of the quantitative relationship between anemia and chronic renal failure. Am J Med Sci 1989; 297 (05) 309-313
  • 98 Martin W, Villani GM, Jothianandan D, Furchgott RF. Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins. J Pharmacol Exp Ther 1985; 233 (03) 679-685
  • 99 Fass RJ, Copelan EA, Brandt JT, Moeschberger ML, Ashton JJ. Platelet-mediated bleeding caused by broad-spectrum penicillins. J Infect Dis 1987; 155 (06) 1242-1248
  • 100 Shattil SJ, Bennett JS, McDonough M, Turnbull J. Carbenicillin and penicillin G inhibit platelet function in vitro by impairing the interaction of agonists with the platelet surface. J Clin Invest 1980; 65 (02) 329-337
  • 101 Jurk K. Analysis of platelet function and dysfunction. Hamostaseologie 2015; 35 (01) 60-72
  • 102 Lassila R. Platelet function tests in bleeding disorders. Semin Thromb Hemost 2016; 42 (03) 185-190
  • 103 Soyoral YU, Demir C, Begenik H. et al. Skin bleeding time for the evaluation of uremic platelet dysfunction and effect of dialysis. Clin Appl Thromb Hemost 2012; 18 (02) 185-188
  • 104 Bilgin AU, Karadogan I, Artac M, Kizilors A, Bligin R, Undar L. Hemodialysis shortens long in vitro closure times as measured by the PFA-100. Med Sci Monit 2007; 13 (03) CR141-CR145
  • 105 Zupan IP, Sabovic M, Salobir B, Ponikvar JB, Cernelc P. Utility of in vitro closure time test for evaluating platelet-related primary hemostasis in dialysis patients. Am J Kidney Dis 2003; 42 (04) 746-751
  • 106 Gäckler A, Rohn H, Lisman T. et al. Evaluation of hemostasis in patients with end-stage renal disease. PLoS One 2019; 14 (02) e0212237
  • 107 Waki K, Hayashi A, Ikeda S. et al. Measuring platelet aggregation in dialysis patients with a whole blood aggregometer by the screen filtration pressure method. Ther Apher Dial 2011; 15 (02) 203-206
  • 108 Tanios BY, Itani HS, Zimmerman DL. Clopidogrel use in end-stage kidney disease. Semin Dial 2015; 28 (03) 276-281
  • 109 Polzin A, Dannenberg L, Sansone R. et al. Antiplatelet effects of aspirin in chronic kidney disease patients. J Thromb Haemost 2016; 14 (02) 375-380
  • 110 Cattaneo M. P2Y12 receptors: structure and function. J Thromb Haemost 2015; 13 (Suppl. 01) S10-S16
  • 111 Best PJ, Steinhubl SR, Berger PB. et al; CREDO Investigators. The efficacy and safety of short- and long-term dual antiplatelet therapy in patients with mild or moderate chronic kidney disease: results from the Clopidogrel for the Reduction of Events During Observation (CREDO) trial. Am Heart J 2008; 155 (04) 687-693
  • 112 Morel O, El Ghannudi S, Jesel L. et al. Cardiovascular mortality in chronic kidney disease patients undergoing percutaneous coronary intervention is mainly related to impaired P2Y12 inhibition by clopidogrel. J Am Coll Cardiol 2011; 57 (04) 399-408
  • 113 Park SH, Kim W, Park CS, Kang WY, Hwang SH, Kim W. A comparison of clopidogrel responsiveness in patients with versus without chronic renal failure. Am J Cardiol 2009; 104 (09) 1292-1295
  • 114 Edfors R, Sahlén A, Szummer K. et al. Outcomes in patients treated with ticagrelor versus clopidogrel after acute myocardial infarction stratified by renal function. Heart 2018; 104 (19) 1575-1582
  • 115 James S, Budaj A, Aylward P. et al. Ticagrelor versus clopidogrel in acute coronary syndromes in relation to renal function: results from the Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation 2010; 122 (11) 1056-1067
  • 116 Gremmel T, Müller M, Steiner S. et al. Chronic kidney disease is associated with increased platelet activation and poor response to antiplatelet therapy. Nephrol Dial Transplant 2013; 28 (08) 2116-2122
  • 117 Collette C, Clerc-Urmès I, Laborde-Castérot H. et al. Antiplatelet and oral anticoagulant therapies in chronic hemodialysis patients: prescribing practices and bleeding risk. Pharmacoepidemiol Drug Saf 2016; 25 (08) 935-943
  • 118 Johansen KB, Balchen T. Tinzaparin and other low-molecular-weight heparins: what is the evidence for differential dependence on renal clearance?. Exp Hematol Oncol 2013; 2: 21
  • 119 Weitz DS, Weitz JI. Update on heparin: what do we need to know?. J Thromb Thrombolysis 2010; 29 (02) 199-207
  • 120 Clark NP. Low-molecular-weight heparin use in the obese, elderly, and in renal insufficiency. Thromb Res 2008; 123 (Suppl. 01) S58-S61
  • 121 Crowther M, Lim W. Low molecular weight heparin and bleeding in patients with chronic renal failure. Curr Opin Pulm Med 2007; 13 (05) 409-413
  • 122 Lim W. Low-molecular-weight heparin in patients with chronic renal insufficiency. Intern Emerg Med 2008; 3 (04) 319-323
  • 123 Wilke T, Wehling M, Amann S, Bauersachs RM, Böttger B. Renal impairment in patients with thromboembolic event: prevalence and clinical implications. A systematic review of the literature [in German]. Dtsch Med Wochenschr 2015; 140 (17) e166-e174
  • 124 Murray PT, Reddy BV, Grossman EJ. et al. A prospective comparison of three argatroban treatment regimens during hemodialysis in end-stage renal disease. Kidney Int 2004; 66 (06) 2446-2453
  • 125 Poterucha TJ, Goldhaber SZ. Warfarin and vascular calcification. Am J Med 2016; 129 (06) 635.e1-635.e4
  • 126 Chan KE, Lazarus JM, Thadhani R, Hakim RM. Warfarin use associates with increased risk for stroke in hemodialysis patients with atrial fibrillation. J Am Soc Nephrol 2009; 20 (10) 2223-2233
  • 127 Olesen JB, Lip GY, Kamper AL. et al. Stroke and bleeding in atrial fibrillation with chronic kidney disease. N Engl J Med 2012; 367 (07) 625-635
  • 128 Friberg L, Benson L, Lip GY. Balancing stroke and bleeding risks in patients with atrial fibrillation and renal failure: the Swedish Atrial Fibrillation Cohort study. Eur Heart J 2015; 36 (05) 297-306
  • 129 Carrero JJ, Evans M, Szummer K. et al. Warfarin, kidney dysfunction, and outcomes following acute myocardial infarction in patients with atrial fibrillation. JAMA 2014; 311 (09) 919-928
  • 130 Knoll F, Sturm G, Lamina C. et al. Coumarins and survival in incident dialysis patients. Nephrol Dial Transplant 2012; 27 (01) 332-337
  • 131 van Leeuwen Y, Rombouts EK, Kruithof CJ, van der Meer FJ, Rosendaal FR. Improved control of oral anticoagulant dosing: a randomized controlled trial comparing two computer algorithms. J Thromb Haemost 2007; 5 (08) 1644-1649
  • 132 Harel Z, Sood MM, Perl J. Comparison of novel oral anticoagulants versus vitamin K antagonists in patients with chronic kidney disease. Curr Opin Nephrol Hypertens 2015; 24 (02) 183-192
  • 133 Diener HC, Aisenberg J, Ansell J. et al. Choosing a particular oral anticoagulant and dose for stroke prevention in individual patients with non-valvular atrial fibrillation: part 2. Eur Heart J 2017; 38 (12) 860-868
  • 134 Harel Z, Sholzberg M, Shah PS. et al. Comparisons between novel oral anticoagulants and vitamin K antagonists in patients with CKD. J Am Soc Nephrol 2014; 25 (03) 431-442
  • 135 Hohnloser SH, Hijazi Z, Thomas L. et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: insights from the ARISTOTLE trial. Eur Heart J 2012; 33 (22) 2821-2830
  • 136 Agnelli G, Buller HR, Cohen A. et al; AMPLIFY Investigators. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med 2013; 369 (09) 799-808
  • 137 Chan KE, Giugliano RP, Patel MR. et al. Nonvitamin K anticoagulant agents in patients with advanced chronic kidney disease or on dialysis with AF. J Am Coll Cardiol 2016; 67 (24) 2888-2899
  • 138 Wang X, Tirucherai G, Marbury TC. et al. Pharmacokinetics, pharmacodynamics, and safety of apixaban in subjects with end-stage renal disease on hemodialysis. J Clin Pharmacol 2016; 56 (05) 628-636
  • 139 Fox KA, Piccini JP, Wojdyla D. et al. Prevention of stroke and systemic embolism with rivaroxaban compared with warfarin in patients with non-valvular atrial fibrillation and moderate renal impairment. Eur Heart J 2011; 32 (19) 2387-2394
  • 140 Mannucci PM, Remuzzi G, Pusineri F. et al. Deamino-8-D-arginine vasopressin shortens the bleeding time in uremia. N Engl J Med 1983; 308 (01) 8-12
  • 141 Kim JH, Baek CH, Min JY, Kim JS, Kim SB, Kim H. Desmopressin improves platelet function in uremic patients taking antiplatelet agents who require emergent invasive procedures. Ann Hematol 2015; 94 (09) 1457-1461
  • 142 Viganò GL, Mannucci PM, Lattuada A, Harris A, Remuzzi G. Subcutaneous desmopressin (DDAVP) shortens the bleeding time in uremia. Am J Hematol 1989; 31 (01) 32-35
  • 143 Schulz-Stübner S, Zielske D, Rossaint R. Comparison between nasal and intravenous desmopressin for the treatment of aminosalicylic acid-induced platelet dysfunction. Eur J Anaesthesiol 2002; 19 (09) 647-651
  • 144 Hedges SJ, Dehoney SB, Hooper JS, Amanzadeh J, Busti AJ. Evidence-based treatment recommendations for uremic bleeding. Nat Clin Pract Nephrol 2007; 3 (03) 138-153
  • 145 Franchini M. The use of desmopressin as a hemostatic agent: a concise review. Am J Hematol 2007; 82 (08) 731-735
  • 146 Hörl WH. Thrombocytopathy and blood complications in uremia [in German]. Wien Klin Wochenschr 2006; 118 (5-6): 134-150
  • 147 Pavord S, Myers B. Bleeding and thrombotic complications of kidney disease. Blood Rev 2011; 25 (06) 271-278
  • 148 Zeigler ZR, Megaludis A, Fraley DS. Desmopressin (d-DAVP) effects on platelet rheology and von Willebrand factor activities in uremia. Am J Hematol 1992; 39 (02) 90-95
  • 149 Köhler M, Hellstern P, Tarrach H, Bambauer R, Wenzel E, Jutzler GA. Subcutaneous injection of desmopressin (DDAVP): evaluation of a new, more concentrated preparation. Haemostasis 1989; 19 (01) 38-44
  • 150 Watson AJ, Keogh JA. Effect of 1-deamino-8-D-arginine vasopressin on the prolonged bleeding time in chronic renal failure. Nephron 1982; 32 (01) 49-52
  • 151 Heunisch C, Resnick DJ, Vitello JM, Martin SJ. Conjugated estrogens for the management of gastrointestinal bleeding secondary to uremia of acute renal failure. Pharmacotherapy 1998; 18 (01) 210-217
  • 152 Liu YK, Kosfeld RE, Marcum SG. Treatment of uraemic bleeding with conjugated oestrogen. Lancet 1984; 2 (8408): 887-890
  • 153 Livio M, Mannucci PM, Viganò G. et al. Conjugated estrogens for the management of bleeding associated with renal failure. N Engl J Med 1986; 315 (12) 731-735
  • 154 Viganò G, Gaspari F, Locatelli M, Pusineri F, Bonati M, Remuzzi G. Dose-effect and pharmacokinetics of estrogens given to correct bleeding time in uremia. Kidney Int 1988; 34 (06) 853-858
  • 155 Zoja C, Viganò G, Bergamelli A, Benigni A, de Gaetano G, Remuzzi G. Prolonged bleeding time and increased vascular prostacyclin in rats with chronic renal failure: effects of conjugated estrogens. J Lab Clin Med 1988; 112 (03) 380-386
  • 156 Noris M, Todeschini M, Zappella S. et al. 17beta-estradiol corrects hemostasis in uremic rats by limiting vascular expression of nitric oxide synthases. Am J Physiol Renal Physiol 2000; 279 (04) F626-F635
  • 157 Heistinger M, Stockenhuber F, Schneider B. et al. Effect of conjugated estrogens on platelet function and prostacyclin generation in CRF. Kidney Int 1990; 38 (06) 1181-1186
  • 158 Shemin D, Elnour M, Amarantes B, Abuelo JG, Chazan JA. Oral estrogens decrease bleeding time and improve clinical bleeding in patients with renal failure. Am J Med 1990; 89 (04) 436-440
  • 159 Sloand JA, Schiff MJ. Beneficial effect of low-dose transdermal estrogen on bleeding time and clinical bleeding in uremia. Am J Kidney Dis 1995; 26 (01) 22-26
  • 160 Gonzalez J, Bryant S, Hermes-DeSantis ER. Transdermal estradiol for the management of refractory uremic bleeding. Am J Health Syst Pharm 2018; 75 (09) e177-e183
  • 161 Ross CS, Pruthi RK, Schmidt KA, Eckerman AL, Rodriguez V. Intranasal oestrogen cream for the prevention of epistaxis in patients with bleeding disorders. Haemophilia 2011; 17 (01) 164
  • 162 Moia M, Mannucci PM, Vizzotto L, Casati S, Cattaneo M, Ponticelli C. Improvement in the haemostatic defect of uraemia after treatment with recombinant human erythropoietin. Lancet 1987; 2 (8570): 1227-1229
  • 163 Viganò G, Benigni A, Mendogni D, Mingardi G, Mecca G, Remuzzi G. Recombinant human erythropoietin to correct uremic bleeding. Am J Kidney Dis 1991; 18 (01) 44-49
  • 164 Livio M, Gotti E, Marchesi D, Mecca G, Remuzzi G, de Gaetano G. Uraemic bleeding: role of anaemia and beneficial effect of red cell transfusions. Lancet 1982; 2 (8306): 1013-1015
  • 165 Cases A, Escolar G, Reverter JC. et al. Recombinant human erythropoietin treatment improves platelet function in uremic patients. Kidney Int 1992; 42 (03) 668-672
  • 166 Zwaginga JJ, IJsseldijk MJ, de Groot PG. et al. Treatment of uremic anemia with recombinant erythropoietin also reduces the defects in platelet adhesion and aggregation caused by uremic plasma. Thromb Haemost 1991; 66 (06) 638-647
  • 167 Peng J, Friese P, Heilmann E, George JN, Burstein SA, Dale GL. Aged platelets have an impaired response to thrombin as quantitated by P-selectin expression. Blood 1994; 83 (01) 161-166
  • 168 Tàssies D, Reverter JC, Cases A, Calls J, Escolar G, Ordinas A. Effect of recombinant human erythropoietin treatment on circulating reticulated platelets in uremic patients: association with early improvement in platelet function. Am J Hematol 1998; 59 (02) 105-109
  • 169 Diaz-Ricart M, Etebanell E, Cases A. et al. Erythropoietin improves signaling through tyrosine phosphorylation in platelets from uremic patients. Thromb Haemost 1999; 82 (04) 1312-1317
  • 170 Farag YM, Keithy-Reddy SR, Mittal BV, Bansal V, Fareed J, Singh AK. Modulation of platelet activation in chronic kidney disease patients on erythropoiesis-stimulating agents. Clin Appl Thromb Hemost 2012; 18 (05) 453-461
  • 171 Besarab A, Bolton WK, Browne JK. et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 1998; 339 (09) 584-590
  • 172 Cardigan RA, McGloin H, Mackie IJ, Machin SJ, Singer M. Activation of the tissue factor pathway occurs during continuous venovenous hemofiltration. Kidney Int 1999; 55 (04) 1568-1574
  • 173 Pawlak K, Pawlak D, Mysliwiec M. Association between tissue factor, its pathway inhibitor and oxidative stress in peritoneal dialysis patients. Blood Coagul Fibrinolysis 2007; 18 (05) 467-471
  • 174 Davenport A. What are the anticoagulation options for intermittent hemodialysis?. Nat Rev Nephrol 2011; 7 (09) 499-508
  • 175 Gritters M, Borgdorff P, Grooteman MP. et al. Platelet activation in clinical haemodialysis: LMWH as a major contributor to bio-incompatibility?. Nephrol Dial Transplant 2008; 23 (09) 2911-2917
  • 176 Schoorl M, Grooteman MP, Bartels PC, Nubé MJ. Aspects of platelet disturbances in haemodialysis patients. Clin Kidney J 2013; 6 (03) 266-271
  • 177 Hoenich NA. Platelet and leucocyte behavior during haemodialysis. In: Ronco C. ed. Polymethylmethacrylate: A Flexible Membrane for a Tailored Dialysis. Basel, Switzerland: Karger; 1998: 120-132
  • 178 Bonomini M, Sirolli V, Stuard S, Settefrati N. Interactions between platelets and leukocytes during hemodialysis. Artif Organs 1999; 23 (01) 23-28
  • 179 Gawaz MP, Mujais SK, Schmidt B, Gurland HJ. Platelet-leukocyte aggregation during hemodialysis. Kidney Int 1994; 46 (02) 489-495
  • 180 Daniel L, Fakhouri F, Joly D. et al. Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis. Kidney Int 2006; 69 (08) 1416-1423
  • 181 Aggarwal A, Kabbani SS, Rimmer JM. et al. Biphasic effects of hemodialysis on platelet reactivity in patients with end-stage renal disease: a potential contributor to cardiovascular risk. Am J Kidney Dis 2002; 40 (02) 315-322
  • 182 Kabbani SS, Watkins MW, Ashikaga T. et al. Platelet reactivity characterized prospectively: a determinant of outcome 90 days after percutaneous coronary intervention. Circulation 2001; 104 (02) 181-186
  • 183 Thaulow E, Erikssen J, Sandvik L, Stormorken H, Cohn PF. Blood platelet count and function are related to total and cardiovascular death in apparently healthy men. Circulation 1991; 84 (02) 613-617
  • 184 Trip MD, Cats VM, van Capelle FJ, Vreeken J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N Engl J Med 1990; 322 (22) 1549-1554
  • 185 Remuzzi G, Benigni A, Dodesini P. et al. Platelet function in patients on maintenance hemodialysis: depressed or enhanced?. Clin Nephrol 1982; 17 (02) 60-63
  • 186 Sirolli V, Ballone E, Di Stante S, Amoroso L, Bonomini M. Cell activation and cellular-cellular interactions during hemodialysis: effect of dialyzer membrane. Int J Artif Organs 2002; 25 (06) 529-537
  • 187 Lindsay RM, Friesen M, Koens F, Linton AL, Oreopoulos D, de Veber G. Platelet function in patients on long term peritoneal dialysis. Clin Nephrol 1976; 6 (02) 335-339