Synthesis 2021; 53(05): 933-942
DOI: 10.1055/s-0040-1705989
paper

Anchored Pd(0) Nanoparticles on Synthetic Talc for the Synthesis of Biaryls and a Precursor of Angiotensin II Inhibitors

Beatriz F. dos Santos
a   Organic Catalysis and Biocatalysis Laboratory – LACOB, Federal University of Grande Dourados – UFGD, Dourados, MS, Brazil
,
a   Organic Catalysis and Biocatalysis Laboratory – LACOB, Federal University of Grande Dourados – UFGD, Dourados, MS, Brazil
,
Aline R. de Oliveira
b   State University of Maringá – UEM, Maringá, PR, Brazil
,
Maria H. Sarragiotto
b   State University of Maringá – UEM, Maringá, PR, Brazil
,
a   Organic Catalysis and Biocatalysis Laboratory – LACOB, Federal University of Grande Dourados – UFGD, Dourados, MS, Brazil
› Author Affiliations
N.L.C.D. thanks Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT/Brazil - Chamada FUNDECT/CNPq Nº 15/2014 - PRONEM - MS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Chamada CNPq Nº 12/2017 - Bolsas de Produtividade em Pesquisa - PQ) for financial support and a fellowship. Furthermore, B.F.S. thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil) for her scholarship.


Abstract

The palladium-catalyzed Suzuki–Miyaura cross-coupling reaction is one of the most important and efficient reactions to prepare a variety of organic compounds, including biaryls. Despite the overwhelming number of reports related to this topic, some methodological difficulties persist in terms of catalyst handling, recovery, and reuse, as well as the reaction media. This work reports the rational design of new, efficient, cost-effective, and reusable palladium catalysts supported on synthetic talc for the Suzuki–Miyaura reaction. From the results, key points were identified: both designed catalysts accelerated the reaction in EtOH and an open-flask setup, affording moderate to excellent yields within a short time (e.g., 30 min) even for deactivated aryl halides; the protocol can be applied to a great number of both cross-coupling partners, showing an excellent functional group tolerance; the catalysts can be recovered and reused without significant loss of activity. This protocol was used for the synthesis of a precursor of angiotensin II inhibitors such as valsartan, losartan, irbesartan, and telmisartan.

Supporting Information



Publication History

Received: 22 September 2020

Accepted after revision: 05 November 2020

Article published online:
15 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Wang M, Xue H, Ju F, Yang H. Sci. Rep. 2017; 7: 1
    • 1b Wang Y, Liu Y, Zhang W, Sun H, Zhang K, Jian Y, Gu Q, Zhang G, Li J, Gao Z. ChemSusChem 2019; 12: 5265
  • 2 Kertesz M, Choi CH, Yang S. Chem. Rev. 2005; 105: 3448
  • 3 Kaye S, Fox JM, Hicks FA, Buchwald SL. Adv. Synth. Catal. 2001; 343: 789
    • 4a Yet L. Privileged Structures in Drug Discovery: Medicinal Chemistry and Synthesis. Wiley-VCH Verlag GmbH &Co. KGaA,; 2018
    • 4b O’Brien HM, Manzotti M, Abrams RD, Elorriaga D, Sparkes HA, Davis SA, Bedford RB. Nat. Catal. 2018; 1: 429
  • 5 Stanforth SP. Tetrahedron 1998; 54: 263
  • 6 Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
  • 7 Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
  • 8 Enneiymy M, Le Drian C, Ghimbeu CM, Becht J.-M. RSC Adv. 2018; 8: 17176
    • 9a Oliveira RL, Oliveira CS, Landers R, Correia CR. D. ChemistrySelect 2018; 3: 535
    • 9b Zim D, Gruber AS, Ebeling G, Dupont J, Monteiro AL. Org. Lett. 2000; 2: 2881
    • 11a Diallo AK, Ornelas C, Salmon L, Aranzaes JR, Astruc D. Angew. Chem. Int. Ed. 2007; 46: 8644
    • 11b Herrmann WA, Öfele K, Schneider SK, Herdtweck E, Hoffmann SD. Angew. Chem. 2006; 118: 3943
    • 11c Bustelo E, Guérot C, Hercouet A, Carboni B, Toupet L, Dixneuf PH. J. Am. Chem. Soc. 2005; 127: 11582
    • 11d Snelders DJ. M, Van Koten G, Gebbink RJ. M. K. J. Am. Chem. Soc. 2009; 131: 11407
    • 11e Panahia L, Naimi-Jamal MR, Mokhtari J. J. Organomet. Chem. 2018; 868: 36
    • 12a Ley SV, Ramarao C, Gordon RS, Holmes AB, Morrison AJ, McConvey IF, Shirley IM, Smith SC, Smith MD. Chem. Commun. 2002; 1134
    • 12b Akiyama R, Kobayashi S. J. Am. Chem. Soc. 2003; 125: 3412
  • 13 Liang L, Nie L, Jiang M, Bie F, Shao L, Qi C, Zhang XM, Liu X. New J. Chem. 2018; 42: 11023
  • 14 Du Q, Zhang W, Ma H, Zheng J, Zhou B, Li Y. Tetrahedron 2012; 68: 3577
  • 15 Moura KO, Pastore HO. Microporous Mesoporous Mater. 2014; 190: 292
  • 16 Santos BF, Silva CD. G, Silva BA. L, Katla R, Oliveira AR, Kupfer VL, Rinaldi AW, Domingues NL. C. ChemistrySelect 2017; 2: 9063
  • 17 Santos BF, Pereira CF, Pinz MP, Oliveira AR, Brand G, Katla R, Wilhelm EA, Luchese C, Domingues NL. C. Appl. Organomet. Chem. 2020; 34: e5650
    • 18a Chatterjee A, Ward TR. Catal. Lett. 2016; 146: 820
    • 18b Polshettiwar V, Decottignies A, Len C, Fihri A. ChemSusChem 2010; 3: 502
  • 19 Khan M, Khan M, Kuniyil M, Adil SF, Al-Warthan A, Alkhathlan HZ, Tremel W, Tahir MN, Siddiqui MR. H. Dalton Trans. 2014; 43: 9026
  • 20 Xuan S, Jiang W, Gong X. Dalton Trans. 2011; 40: 7827
  • 21 Hartwig JF. Acc. Chem. Res. 1998; 31: 852
    • 22a Glende C, Klein M, Schmitt H, Erdinger L, Boche G. Mutat. Res. 2002; 515: 15
    • 22b Gao C, Lowndes NF, Eriksson LA. ACS Omega 2017; 2: 1836
    • 22c Parrish CA, Adams ND, Auger KR, Burgess JL, Carson JD, Chaudhari AM, Copeland RA, Diamond MA, Donatelli CA, Duffy KJ, Faucette LF, Finer JT, Huffman WF, Hugger ED, Jackson JR, Knight SD, Luo L, Moore ML, Newlander KA, Ridgers LH, Sakowicz R, Shaw AN, Sung C.-MM, Sutton D, Wood KW, Zhang S.-Y, Zimmerman MN, Dhanak D. J. Med. Chem. 2007; 50: 4939
    • 23a Sharma AK, Joshi H, Singh AK. RSC Adv. 2020; 10: 6452
    • 23b Tamoradi T, Veisi H, Karmakar B. ChemistrySelect 2019; 4: 10953
    • 23c Taher A, Nandi D, Choudhary M, Mallick K. New J. Chem. 2015; 39: 5589
    • 23d Patel HA, Patel AL, Bedekar AV. Appl. Organomet. Chem. 2015; 29: 1
  • 24 Patel HA, Sharma SK, Jasra RV. J. Mol. Catal. A: Chem. 2008; 286: 31
  • 25 Wu S, Jiang H, Zhang H, Zhao L, Yuan P, Zhang Y, Su Q, Wang Y, Wu L, Yang Q. J. Organomet. Chem. 2020; 925: 121496
  • 26 Leaver DJ, Cleary B, Nguyen N, Priebbenow DL, Lagiakos HR, Sanchez J, Xue L, Huang F, Sun Y, Mujumdar P, Mudududdla R, Varghese S, Teguh S, Charman SA, White KL, Katneni K, Cuellar M, Strasser JM, Dahlin JL, Walters MA, Street IP, Monahan BJ, Jarman KE, Sabroux HJ, Falk H, Chung MC, Hermans SJ, Parker MW, Thomas T, Baell JB. J. Med. Chem. 2019; 62: 7146
  • 27 Quibell JM, Duan G, Perry GJ. P, Larrosa I. Chem. Commun. 2019; 55: 6445
  • 28 Scheepstra M, Andrei SA, Vries RM. J. M, Meijer FA, Ma J.-N, Burstein ES, Olsson R, Ottmann C, Milroy L.-G, Brunsveld L. ACS Chem. Neurosci. 2017; 8: 2065
  • 29 Ma G, Zhao H, Wang J, Le Y, Jiang H, Deng H, Hao J, Wan W. Dyes Pigm. 2018; 158: 420
  • 30 Norouzi N, Das MK, Richard AJ, Ibrahim AA, El-Kaderi HM, El-Shall MS. Nanoscale 2020; 12: 19191
  • 31 Heravi MM, Asadi S, Chopani SM. H, Jaderi E. Appl. Organomet. Chem. 2020; 34: e5805
  • 32 Chen W, Lu X.-Y, Xu B.-H, Yu W.-g, Zhou Z.-n, Hu Y. Synthesis 2018; 50: 1499
  • 33 Yang J, Wu Y, Wu X, Liu W, Wang Y, Wang J. Green Chem. 2019; 21: 5267
  • 34 Kunfi A, May Z, Németh P, London G. J. Catal. 2018; 361: 84
  • 35 Pang Q, Fan X. ChemistrySelect 2020; 5: 7959
  • 36 Yu D.-G, Wang X, Zhu R.-Y, Luo S, Zhang X.-B, Wang B.-Q, Wang L, Shi Z.-J. J. Am. Chem. Soc. 2012; 134: 14638
  • 37 Çakır S, Türkmen H. Appl. Organomet. Chem. 2020; 34: e5499
  • 38 Bhattacharjee A, Hosoya H, Ikeda H, Nishi K, Tsurugi H, Mashima K. Chem. Eur. J. 2018; 24: 11278
  • 39 Gruttadauria M, Liotta LF, Salvo AM. P, Giacalone F, La Parola V, Aprile C, Noto R. Adv. Synth. Catal. 2011; 353: 2119