Digestive Disease Interventions 2020; 04(01): 067-072
DOI: 10.1055/s-0040-1705098
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Value of Simulation in Interventional Radiology

Christopher J. Barnett
1   Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York
,
Bradley B. Pua
1   Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York
› Author Affiliations
Further Information

Publication History

06 December 2019

31 December 2019

Publication Date:
12 March 2020 (online)

Abstract

Medicine has increasingly incorporated simulation training amidst improving simulation technologies and evolving educational perspectives. This article examines the broad concept of simulation in medicine to focus, in particular, on its multifaceted value for providers and patients within the field of interventional radiology. Simulation technology ranges in degrees of fidelity, with new advancements notably in high-fidelity endovascular simulation, as well as in augmented and virtual reality. Current evidence on the validity of simulation within interventional radiology is promising, spanning training, credentialing, preprocedural planning, and team-building applications.

 
  • References

  • 1 Nestel D, Kelly M. An introduction to healthcare simulation. In: Nestel D, Kelly M, Jolly B, Watson M. , eds. Healthcare Simulation Education: Evidence, Theory and Practice. Hoboken, NJ: Wiley-Blackwell; 2018: 3-8
  • 2 Gaba DM. The future vision of simulation in health care. Qual Saf Health Care 2004; 13 (Suppl. 01) i2-i10
  • 3 Owen H. Early examples of simulation in training and healthcare. In: Simulation in Healthcare Education. New York, NY: Springer; 2016: 9-19
  • 4 Pritchett AR, van Paassen MM, Wieland FP, Johnson EN. Aerospace vehicle and air traffic simulation. In: Obaidat MS, Papadimitriou GI, eds. Applied System Simulation: Methodologies and Applications. Boston, MA: Springer; 2003: 365-389
  • 5 Dawson S. Procedural simulation: a primer. Radiology 2006; 241 (01) 17-25
  • 6 Allerton D. Principles of Flight Simulation. Chichester, UK: John Wiley & Sons; 2009
  • 7 Hill RR, Tolk A. A history of military computer simulation. In: Tolk A, Fowler J, Shao G, Yücesan E, eds. Advances in Modeling and Simulation: Seminal Research from 50 Years of Winter Simulation Conferences. Cham: Springer; 2017: 277-299
  • 8 Fletcher JD. Education and training technology in the military. Science 2009; 323 (5910): 72-75
  • 9 Sarwar A, Zhou L, Novack V. , et al. Hospital volume and mortality after transjugular intrahepatic portosystemic shunt creation in the United States. Hepatology 2018; 67 (02) 690-699
  • 10 Mirza S, Athreya S. Review of simulation training in interventional radiology. Acad Radiol 2018; 25 (04) 529-539
  • 11 Miller ZA, Amin A, Tu J, Echenique A, Winokur RS. Simulation-based training for interventional radiology and opportunities for improving the educational paradigm. Tech Vasc Interv Radiol 2019; 22 (01) 35-40
  • 12 Amin A, Salsamendi J, Sullivan T. High-fidelity endovascular simulation. Tech Vasc Interv Radiol 2019; 22 (01) 7-13
  • 13 Maran NJ, Glavin RJ. Low- to high-fidelity simulation - a continuum of medical education?. Med Educ 2003; 37 (Suppl. 01) 22-28
  • 14 Munshi F, Lababidi H, Alyousef S. Low-versus high-fidelity simulations in teaching and assessing clinical skills. J Taibah Univ Med Sci. 2015; 10 (01) 12-15
  • 15 Aggarwal R, Grantcharov TP, Eriksen JR. , et al. An evidence-based virtual reality training program for novice laparoscopic surgeons. Ann Surg 2006; 244 (02) 310-314
  • 16 Seymour NE, Gallagher AG, Roman SA. , et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg 2002; 236 (04) 458-463 , discussion 463–464
  • 17 Zendejas B, Brydges R, Hamstra SJ, Cook DA. State of the evidence on simulation-based training for laparoscopic surgery: a systematic review. Ann Surg 2013; 257 (04) 586-593
  • 18 Ennen CS, Satin AJ. Training and assessment in obstetrics: the role of simulation. Best Pract Res Clin Obstet Gynaecol 2010; 24 (06) 747-758
  • 19 Lorello GR, Cook DA, Johnson RL, Brydges R. Simulation-based training in anaesthesiology: a systematic review and meta-analysis. Br J Anaesth 2014; 112 (02) 231-245
  • 20 Ahmed K, Jawad M, Abboudi M. , et al. Effectiveness of procedural simulation in urology: a systematic review. J Urol 2011; 186 (01) 26-34
  • 21 Singh S, Sedlack RE, Cook DA. Effects of simulation-based training in gastrointestinal endoscopy: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2014; 12 (10) 1611-23 .e4
  • 22 Andreatta P, Chen Y, Marsh M, Cho K. Simulation-based training improves applied clinical placement of ultrasound-guided PICCs. Support Care Cancer 2011; 19 (04) 539-543
  • 23 Mendiratta-Lala M, Williams T, de Quadros N, Bonnett J, Mendiratta V. The use of a simulation center to improve resident proficiency in performing ultrasound-guided procedures. Acad Radiol 2010; 17 (04) 535-540
  • 24 May BJ, Khoury JK, Winokur RS. Tools for simulation; low budget and no budget. Tech Vasc Interv Radiol 2019; 22 (01) 3-6
  • 25 Coles TR, Meglan D, John NW. The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans Haptics 2011; 4 (01) 51-66
  • 26 Panait L, Akkary E, Bell RL, Roberts KE, Dudrick SJ, Duffy AJ. The role of haptic feedback in laparoscopic simulation training. J Surg Res 2009; 156 (02) 312-316
  • 27 Ström P, Hedman L, Särnå L, Kjellin A, Wredmark T, Felländer-Tsai L. Early exposure to haptic feedback enhances performance in surgical simulator training: a prospective randomized crossover study in surgical residents. Surg Endosc 2006; 20 (09) 1383-1388
  • 28 Mitchell EL, Sheahan MG, Schwiesow M. Simulation in vascular surgery. In: Comprehensive Healthcare Simulation: Surgery and Surgical Subspecialties. Springer; 2019: 327-347
  • 29 Curtis MT, DiazGranados D, Feldman M. Judicious use of simulation technology in continuing medical education. J Contin Educ Health Prof 2012; 32 (04) 255-260
  • 30 Glaiberman CB, Jacobs B, Street M, Duncan JR, Scerbo MW, Pilgrim TK. Simulation in training: one-year experience using an efficiency index to assess interventional radiology fellow training status. J Vasc Interv Radiol 2008; 19 (09) 1366-1371
  • 31 Chaer RA, Derubertis BG, Lin SC. , et al. Simulation improves resident performance in catheter-based intervention: results of a randomized, controlled study. Ann Surg 2006; 244 (03) 343-352
  • 32 See KW, Chui KH, Chan WH, Wong KC, Chan YC. Evidence for endovascular simulation training: a systematic review. Eur J Vasc Endovasc Surg 2016; 51 (03) 441-451
  • 33 Dayal R, Faries PL, Lin SC. , et al. Computer simulation as a component of catheter-based training. J Vasc Surg 2004; 40 (06) 1112-1117
  • 34 Berry M, Reznick R, Lystig T, Lönn L. The use of virtual reality for training in carotid artery stenting: a construct validation study. Acta Radiol 2008; 49 (07) 801-805
  • 35 Tedesco MM, Pak JJ, Harris Jr EJ, Krummel TM, Dalman RL, Lee JT. Simulation-based endovascular skills assessment: the future of credentialing?. J Vasc Surg 2008; 47 (05) 1008-1 , discussion 1014
  • 36 Hsu JH, Younan D, Pandalai S. , et al. Use of computer simulation for determining endovascular skill levels in a carotid stenting model. J Vasc Surg 2004; 40 (06) 1118-1125
  • 37 Van Herzeele I, Aggarwal R, Choong A, Brightwell R, Vermassen FE, Cheshire NJ. Virtual reality simulation objectively differentiates level of carotid stent experience in experienced interventionalists. J Vasc Surg 2007; 46 (05) 855-863
  • 38 Gosling AF, Kendrick DE, Kim AH. , et al. Simulation of carotid artery stenting reduces training procedure and fluoroscopy times. J Vasc Surg 2017; 66 (01) 298-306
  • 39 Miller GE. The assessment of clinical skills/competence/performance. Acad Med 1990; 65 (09) S63-S67
  • 40 Alinier G. A typology of educationally focused medical simulation tools. Med Teach 2007; 29 (08) e243-e250
  • 41 Schirmer CM, Siddiqui AH, Frid I. , et al. Modern training and credentialing in neuroendovascular acute ischemic stroke therapy. Neurosurgery 2019; 85 (Suppl. 01) S52-S57
  • 42 Aronow HD, Collins TJ, Gray WA. , et al. SCAI/SVM expert consensus statement on carotid stenting: training and credentialing for carotid stenting. Catheter Cardiovasc Interv 2016; 87 (02) 188-199
  • 43 Lessne ML, Kesselman A, Suhocki PV. Interventional procedures for global health radiology. In: Mollura DJ, Culp MP, Lungren MP, eds. Radiology in Global Health: Strategies, Implementation, and Applications. Cham: Springer; 2019: 339-348
  • 44 Desender L, Rancic Z, Aggarwal R. , et al; EVEREST (European Virtual Reality Endovascular RESearch Team). Patient-specific rehearsal prior to EVAR: a pilot study. Eur J Vasc Endovasc Surg 2013; 45 (06) 639-647
  • 45 Willaert WI, Aggarwal R, Nestel DF. , et al; European Virtual Reality Endovascular Research Team, EVEResT. Patient-specific simulation for endovascular procedures: qualitative evaluation of the development process. Int J Med Robot 2010; 6 (02) 202-210
  • 46 Hislop SJ, Hedrick JH, Singh MJ. , et al. Simulation case rehearsals for carotid artery stenting. Eur J Vasc Endovasc Surg 2009; 38 (06) 750-754
  • 47 Cates CU, Patel AD, Nicholson WJ. Use of virtual reality simulation for mission rehearsal for carotid stenting. JAMA 2007; 297 (03) 265-266
  • 48 Lyons GR, Pua BB. Ablation planning software for optimizing treatment: challenges, techniques, and applications. Tech Vasc Interv Radiol 2019; 22 (01) 21-25
  • 49 Moche M, Busse H, Futterer JJ. , et al. Clinical evaluation of in silico planning and real-time simulation of hepatic radiofrequency ablation (ClinicIMPPACT Trial). Eur Radiol 2020; 30 (02) 934-942
  • 50 Bastawrous S, Wake N, Levin D, Ripley B. Principles of three-dimensional printing and clinical applications within the abdomen and pelvis. Abdom Radiol (NY) 2018; 43 (10) 2809-2822
  • 51 Mafeld S, Nesbitt C, McCaslin J. , et al. Three-dimensional (3D) printed endovascular simulation models: a feasibility study. Ann Transl Med 2017; 5 (03) 42
  • 52 Itagaki MW. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Diagn Interv Radiol 2015; 21 (04) 338-341
  • 53 Chang D, Tummala S, Sotero D. , et al. Three-dimensional printing for procedure rehearsal/simulation/planning in interventional radiology. Tech Vasc Interv Radiol 2019; 22 (01) 14-20
  • 54 Sulaiman A, Boussel L, Taconnet F. , et al. In vitro non-rigid life-size model of aortic arch aneurysm for endovascular prosthesis assessment. Eur J Cardiothorac Surg 2008; 33 (01) 53-57
  • 55 Valverde I, Gomez G, Coserria JF. , et al. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv 2015; 85 (06) 1006-1012
  • 56 Jahnke P, Schwarz FB, Ziegert M. , et al. A radiopaque 3D printed, anthropomorphic phantom for simulation of CT-guided procedures. Eur Radiol 2018; 28 (11) 4818-4823
  • 57 Sheth R, Balesh ER, Zhang YS, Hirsch JA, Khademhosseini A, Oklu R. Three-dimensional printing: an enabling technology for IR. J Vasc Interv Radiol 2016; 27 (06) 859-865
  • 58 Uppot RN, Laguna B, McCarthy CJ. , et al. Implementing virtual and augmented reality tools for radiology education and training, communication, and clinical care. Radiology 2019; 291 (03) 570-580
  • 59 Monsky W, James R, Seslar S. Virtual and augmented reality applications in medicine and surgery-the fantastic voyage is here. Anat Physiol 2019 9. (01):
  • 60 Douglas DB, Wilke CA, Gibson D, Petricoin EF, Liotta L. Virtual reality and augmented reality: advances in surgery. Biol Eng Med. 2017; 2: 1-8
  • 61 Wu W, Xue Y, Wang D, Xue J, Zhai W, Liang P. A simulator for percutaneous hepatic microwave thermal ablation under ultrasound guidance. Int J Hyperthermia 2014; 30 (07) 429-437
  • 62 Solbiati M, Passera KM, Rotilio A. , et al. Augmented reality for interventional oncology: proof-of-concept study of a novel high-end guidance system platform. Eur Radiol Exp 2018; 2 (01) 18
  • 63 Aggarwal R, Mytton OT, Derbrew M. , et al. Training and simulation for patient safety. Qual Saf Health Care 2010; 19 (Suppl. 02) i34-i43
  • 64 Armenia S, Thangamathesvaran L, Caine AD, King N, Kunac A, Merchant AM. The role of high-fidelity team-based simulation in acute care settings: a systematic review. Surg J (N Y) 2018; 4 (03) e136-e151
  • 65 Pena G, Altree M, Field J. , et al. Nontechnical skills training for the operating room: a prospective study using simulation and didactic workshop. Surgery 2015; 158 (01) 300-309
  • 66 Aho P, Vikatmaa L, Niemi-Murola L, Venermo M. Simulation training streamlines the real-life performance in endovascular repair of ruptured abdominal aortic aneurysms. J Vasc Surg 2019; 69 (06) 1758-1765
  • 67 DeVita MA, Schaefer J, Lutz J, Wang H, Dongilli T. Improving medical emergency team (MET) performance using a novel curriculum and a computerized human patient simulator. Qual Saf Health Care 2005; 14 (05) 326-331
  • 68 Briggs A, Raja AS, Joyce MF. , et al. The role of nontechnical skills in simulated trauma resuscitation. J Surg Educ 2015; 72 (04) 732-739
  • 69 Lateef F. Simulation-based learning: just like the real thing. J Emerg Trauma Shock 2010; 3 (04) 348-352
  • 70 Scherer K, Winokur RS. Multidisciplinary team training simulation in interventional radiology. Tech Vasc Interv Radiol 2019; 22 (01) 32-34