Semin Neurol 2020; 40(02): 177-191
DOI: 10.1055/s-0040-1702938
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Treatable Movement Disorders of Infancy and Early Childhood

Bhooma R. Aravamuthan
1   Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
,
Toni S. Pearson
1   Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
› Author Affiliations
Further Information

Publication History

Publication Date:
20 February 2020 (online)

Abstract

Movement disorders in childhood can be difficult to diagnose early. Disease processes present variably and can mimic each other. It is particularly important to remain vigilant for the subset of these movement disorders that are treatable. These disorders can be managed with (1) treatments specific to the disease that substantially reduce symptoms; (2) treatments that can prevent progression; (3) treatments that can hasten recovery; or (4) surveillance and management of the associated, sometimes life-threatening, comorbidities. Here, we present a practical and phenomenology-oriented framework for diagnosing and managing these treatable movement disorders of infancy and early childhood.

 
  • References

  • 1 Albanese A, Bhatia K, Bressman SB. , et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013; 28 (07) 863-873
  • 2 Sanger TD, Chen D, Fehlings DL. , et al. Definition and classification of hyperkinetic movements in childhood. Mov Disord 2010; 25 (11) 1538-1549
  • 3 Eggink H, Kremer D, Brouwer OF. , et al. Spasticity, dyskinesia and ataxia in cerebral palsy: Are we sure we can differentiate them?. Eur J Paediatr Neurol 2017; 21 (05) 703-706
  • 4 Dressler D. Nonprimary dystonias. Handb Clin Neurol 2011; 100: 513-538
  • 5 Himmelmann K, McManus V, Hagberg G, Uvebrant P, Krägeloh-Mann I, Cans C. ; SCPE Collaboration. Dyskinetic cerebral palsy in Europe: trends in prevalence and severity. Arch Dis Child 2009; 94 (12) 921-926
  • 6 Ng J, Papandreou A, Heales SJ, Kurian MA. Monoamine neurotransmitter disorders--clinical advances and future perspectives. Nat Rev Neurol 2015; 11 (10) 567-584
  • 7 Wijemanne S, Jankovic J. Dopa-responsive dystonia--clinical and genetic heterogeneity. Nat Rev Neurol 2015; 11 (07) 414-424
  • 8 Segawa M, Nomura Y, Nishiyama N. Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol 2003; 54 (Suppl. 06) S32-S45
  • 9 Willemsen MA, Verbeek MM, Kamsteeg E-J. , et al. Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 2010; 133 (Pt 6): 1810-1822
  • 10 Friedman J, Roze E, Abdenur JE. , et al. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol 2012; 71 (04) 520-530
  • 11 Watson MS, Mann MY, Lloyd-Puryear MA, Rinaldo P, Howell RR. ; American College of Medical Genetics Newborn Screening Expert Group. Newborn screening: toward a uniform screening panel and system--executive summary. Pediatrics 2006; 117 (5 Pt 2, Suppl 3): S296-S307
  • 12 Hedlund GL, Longo N, Pasquali M. Glutaric acidemia type 1. Am J Med Genet C Semin Med Genet 2006; 142C (02) 86-94
  • 13 Boy N, Garbade SF, Heringer J, Seitz A, Kölker S, Harting I. Patterns, evolution, and severity of striatal injury in insidious- vs acute-onset glutaric aciduria type 1. J Inherit Metab Dis 2019; 42 (01) 117-127
  • 14 Brismar J, Ozand PT. CT and MR of the brain in disorders of the propionate and methylmalonate metabolism. AJNR Am J Neuroradiol 1994; 15 (08) 1459-1473
  • 15 Kassem H, Wafaie A, Alsuhibani S, Farid T. Biotin-responsive basal ganglia disease: neuroimaging features before and after treatment. AJNR Am J Neuroradiol 2014; 35 (10) 1990-1995
  • 16 Boy N, Mühlhausen C, Maier EM. , et al; Additional Individual Contributors. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 2017; 40 (01) 75-101
  • 17 Fraser JL, Venditti CP. Methylmalonic and propionic acidemias: clinical management update. Curr Opin Pediatr 2016; 28 (06) 682-693
  • 18 Schreiber J, Chapman KA, Summar ML. , et al. Neurologic considerations in propionic acidemia. Mol Genet Metab 2012; 105 (01) 10-15
  • 19 Chapman KA, Summar ML. Propionic acidemia consensus conference summary. Mol Genet Metab 2012; 105 (01) 3-4
  • 20 Heidenreich R, Natowicz M, Hainline BE. , et al. Acute extrapyramidal syndrome in methylmalonic acidemia: “metabolic stroke” involving the globus pallidus. J Pediatr 1988; 113 (06) 1022-1027
  • 21 Alfadhel M, Almuntashri M, Jadah RH. , et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis 2013; 8 (01) 83
  • 22 Ozand PT, Gascon GG, Al Essa M. , et al. Biotin-responsive basal ganglia disease: a novel entity. Brain 1998; 121 (Pt 7): 1267-1279
  • 23 Bressman SB, Sabatti C, Raymond D. , et al. The DYT1 phenotype and guidelines for diagnostic testing. Neurology 2000; 54 (09) 1746-1752
  • 24 Opal P, Tintner R, Jankovic J. , et al. Intrafamilial phenotypic variability of the DYT1 dystonia: from asymptomatic TOR1A gene carrier status to dystonic storm. Mov Disord 2002; 17 (02) 339-345
  • 25 Ozelius LJ, Hewett JW, Page CE. , et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 1997; 17 (01) 40-48
  • 26 Ozelius LJ, Kramer PL, de Leon D. , et al. Strong allelic association between the torsion dystonia gene (DYT1) and loci on chromosome 9q34 in Ashkenazi Jews. Am J Hum Genet 1992; 50 (03) 619-628
  • 27 Aravamuthan BR, Waugh JL, Stone SS. Deep brain stimulation for monogenic dystonia. Curr Opin Pediatr 2017; 29 (06) 691-696
  • 28 Isaias IU, Alterman RL, Tagliati M. Outcome predictors of pallidal stimulation in patients with primary dystonia: the role of disease duration. Brain 2008; 131 (Pt 7): 1895-1902
  • 29 Brüggemann N, Kühn A, Schneider SA. , et al. Short- and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurology 2015; 84 (09) 895-903
  • 30 Jinnah HA, Alterman R, Klein C. , et al. Deep brain stimulation for dystonia: a novel perspective on the value of genetic testing. J Neural Transm (Vienna) 2017; 124 (04) 417-430
  • 31 Saunders-Pullman R, Fuchs T, San Luciano M. , et al. Heterogeneity in primary dystonia: lessons from THAP1, GNAL, and TOR1A in Amish-Mennonites. Mov Disord 2014; 29 (06) 812-818
  • 32 Carecchio M, Invernizzi F, Gonzàlez-Latapi P. , et al. Frequency and phenotypic spectrum of KMT2B dystonia in childhood: A single-center cohort study. Mov Disord 2019; 34 (10) 1516-1527
  • 33 Meyer E, Carss KJ, Rankin J. , et al; UK10K Consortium; Deciphering Developmental Disorders Study; NIHR BioResource Rare Diseases Consortium. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat Genet 2017; 49 (02) 223-237
  • 34 Zech M, Boesch S, Maier EM. , et al. Haploinsufficiency of KMT2B, encoding the lysine-specific histone methyltransferase 2B, results in early-onset generalized dystonia. Am J Hum Genet 2016; 99 (06) 1377-1387
  • 35 Tuschl K, Meyer E, Valdivia LE. , et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat Commun 2016; 7 (01) 11601
  • 36 Lorincz MT. Neurologic Wilson's disease. Ann N Y Acad Sci 2010; 1184 (01) 173-187
  • 37 Hogarth P, Kurian MA, Gregory A. , et al. Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Mol Genet Metab 2017; 120 (03) 278-287
  • 38 Meyer E, Kurian MA, Hayflick SJ. Neurodegeneration with brain iron accumulation: genetic diversity and pathophysiological mechanisms. Annu Rev Genomics Hum Genet 2015; 16 (01) 257-279
  • 39 Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation. Handb Clin Neurol 2018; 147: 293-305
  • 40 Hess CW, Okun MS. Diagnosing Parkinson disease. Continuum (Minneap Minn) 2016; 22 (4 Movement Disorders): 1047-1063
  • 41 Berg D, Postuma RB, Bloem B. , et al. Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson's disease. Mov Disord 2014; 29 (04) 454-462
  • 42 Garcia-Cazorla A, Duarte ST. Parkinsonism and inborn errors of metabolism. J Inherit Metab Dis 2014; 37 (04) 627-642
  • 43 Sanger TD, Chen D, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW. ; Taskforce on Childhood Motor Disorders. Definition and classification of negative motor signs in childhood. Pediatrics 2006; 118 (05) 2159-2167
  • 44 Cardoso F. Sydenham's chorea. Curr Treat Options Neurol 2008; 10 (03) 230-235
  • 45 Dean SL, Singer HS. Treatment of Sydenham's chorea: a review of the current evidence. Tremor Other Hyperkinet Mov (N Y) 2017; 7: 456
  • 46 Ananth AL, Robichaux-Viehoever A, Kim Y-M. , et al. Clinical course of six children with GNAO1 mutations causing a severe and distinctive movement disorder. Pediatr Neurol 2016; 59: 81-84
  • 47 Feng H, Sjögren B, Karaj B, Shaw V, Gezer A, Neubig RR. Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations. Neurology 2017; 89 (08) 762-770
  • 48 Schirinzi T, Garone G, Travaglini L. , et al. Phenomenology and clinical course of movement disorder in GNAO1 variants: results from an analytical review. Parkinsonism Relat Disord 2019; 61: 19-25
  • 49 Saitsu H, Fukai R, Ben-Zeev B. , et al. Phenotypic spectrum of GNAO1 variants: epileptic encephalopathy to involuntary movements with severe developmental delay. Eur J Hum Genet 2016; 24 (01) 129-134
  • 50 Danti FR, Galosi S, Romani M. , et al. GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome. Neurol Genet 2017; 3 (02) e143
  • 51 Feng H, Khalil S, Neubig RR, Sidiropoulos C. A mechanistic review on GNAO1-associated movement disorder. Neurobiol Dis 2018; 116: 131-141
  • 52 Krude H, Schütz B, Biebermann H. , et al. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest 2002; 109 (04) 475-480
  • 53 Breedveld GJ, van Dongen JWF, Danesino C. , et al. Mutations in TITF-1 are associated with benign hereditary chorea. Hum Mol Genet 2002; 11 (08) 971-979
  • 54 Peall KJ, Kurian MA. Benign hereditary chorea: an update. Tremor Other Hyperkinet Mov (N Y) 2015; 5: 314
  • 55 Parnes M, Bashir H, Jankovic J. Is benign hereditary chorea really benign? Brain-lung-thyroid syndrome caused by NKX2-1 mutations. Mov Disord Clin Pract (Hoboken) 2018; 6 (01) 34-39
  • 56 Graves TD, Cha Y-H, Hahn AF. , et al; CINCH Investigators. Episodic ataxia type 1: clinical characterization, quality of life and genotype-phenotype correlation. Brain 2014; 137 (Pt 4): 1009-1018
  • 57 Zima L, Ceulemans S, Reiner G. , et al. Paroxysmal motor disorders: expanding phenotypes lead to coalescing genotypes. Ann Clin Transl Neurol 2018; 5 (08) 996-1010
  • 58 Sintas C, Carreño O, Fernàndez-Castillo N. , et al. Mutation spectrum in the CACNA1A gene in 49 patients with episodic ataxia. Sci Rep 2017; 7 (01) 2514
  • 59 Mantuano E, Romano S, Veneziano L. , et al. Identification of novel and recurrent CACNA1A gene mutations in fifteen patients with episodic ataxia type 2. J Neurol Sci 2010; 291 (1-2): 30-36
  • 60 Denier C, Ducros A, Vahedi K. , et al. High prevalence of CACNA1A truncations and broader clinical spectrum in episodic ataxia type 2. Neurology 1999; 52 (09) 1816-1821
  • 61 Baloh RW. Episodic ataxias 1 and 2. Handb Clin Neurol 2012; 103: 595-602
  • 62 Orsucci D, Raglione LM, Mazzoni M, Vista M. Therapy of episodic ataxias: case report and review of the literature. Drugs Context 2019; 8: 212576
  • 63 Imbrici P, Altamura C, Gualandi F. , et al. A novel KCNA1 mutation in a patient with paroxysmal ataxia, myokymia, painful contractures and metabolic dysfunctions. Mol Cell Neurosci 2017; 83: 6-12
  • 64 Mikati MA, Kramer U, Zupanc ML, Shanahan RJ. Alternating hemiplegia of childhood: clinical manifestations and long-term outcome. Pediatr Neurol 2000; 23 (02) 134-141
  • 65 Rosewich H, Sweney MT, DeBrosse S. , et al. Research conference summary from the 2014 International Task Force on ATP1A3-Related Disorders. Neurol Genet 2017; 3 (02) e139
  • 66 Pisciotta L, Gherzi M, Stagnaro M. , et al; I.B.AHC Consortium. Alternating hemiplegia of childhood: pharmacological treatment of 30 Italian patients. Brain Dev 2017; 39 (06) 521-528
  • 67 Neville BG, Ninan M. The treatment and management of alternating hemiplegia of childhood. Dev Med Child Neurol 2007; 49 (10) 777-780
  • 68 Masoud M, Prange L, Wuchich J, Hunanyan A, Mikati MA. Diagnosis and treatment of alternating hemiplegia of childhood. Curr Treat Options Neurol 2017; 19 (02) 8
  • 69 Sasaki M, Sakuragawa N, Osawa M. Long-term effect of flunarizine on patients with alternating hemiplegia of childhood in Japan. Brain Dev 2001; 23 (05) 303-305
  • 70 Di Rosa G, Spanò M, Pustorino G. , et al. Alternating hemiplegia of childhood successfully treated with topiramate: 18 months of follow-up. Neurology 2006; 66 (01) 146-146
  • 71 Jiang W, Chi Z, Ma L. , et al. Topiramate: a new agent for patients with alternating hemiplegia of childhood. Neuropediatrics 2006; 37 (04) 229-233
  • 72 Castiglioni C, Verrigni D, Okuma C. , et al. Pyruvate dehydrogenase deficiency presenting as isolated paroxysmal exercise induced dystonia successfully reversed with thiamine supplementation. Case report and mini-review. Eur J Paediatr Neurol 2015; 19 (05) 497-503
  • 73 Strassburg HM, Koch J, Mayr J, Sperl W, Boltshauser E. Acute flaccid paralysis as initial symptom in 4 patients with novel E1α mutations of the pyruvate dehydrogenase complex. Neuropediatrics 2006; 37 (03) 137-141
  • 74 Debray F-G, Lambert M, Gagne R. , et al. Pyruvate dehydrogenase deficiency presenting as intermittent isolated acute ataxia. Neuropediatrics 2008; 39 (01) 20-23
  • 75 Barnerias C, Saudubray JM, Touati G. , et al. Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol 2010; 52 (02) e1-e9
  • 76 Head RA, de Goede CG, Newton RW. , et al. Pyruvate dehydrogenase deficiency presenting as dystonia in childhood. Dev Med Child Neurol 2004; 46 (10) 710-712
  • 77 Patel KP, O'Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab 2012; 105 (01) 34-43
  • 78 Sofou K, Dahlin M, Hallböök T, Lindefeldt M, Viggedal G, Darin N. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes. J Inherit Metab Dis 2017; 40 (02) 237-245
  • 79 Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep 2013; 13 (04) 342
  • 80 Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord 2010; 25 (03) 275-281
  • 81 Pearson TS, Pons R, Engelstad K, Kane SA, Goldberg ME, De Vivo DC. Paroxysmal eye-head movements in Glut1 deficiency syndrome. Neurology 2017; 88 (17) 1666-1673
  • 82 Akman CI, Yu J, Alter A, Engelstad K, De Vivo DC. Diagnosing glucose transporter 1 deficiency at initial presentation facilitates early treatment. J Pediatr 2016; 171: 220-226
  • 83 Yang H, Wang D, Engelstad K. , et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol 2011; 70 (06) 996-1005
  • 84 Alter AS, Engelstad K, Hinton VJ. , et al. Long-term clinical course of Glut1 deficiency syndrome. J Child Neurol 2015; 30 (02) 160-169
  • 85 Caffarelli M, Kimia AA, Torres AR. Acute ataxia in children: a review of the differential diagnosis and evaluation in the emergency department. Pediatr Neurol 2016; 65: 14-30
  • 86 Whelan HT, Verma S, Guo Y. , et al. Evaluation of the child with acute ataxia: a systematic review. Pediatr Neurol 2013; 49 (01) 15-24
  • 87 Rudloe T, Prabhu SP, Gorman MP. , et al. The yield of neuroimaging in children presenting to the emergency department with acute ataxia in the post-varicella vaccine era. J Child Neurol 2015; 30 (10) 1333-1339
  • 88 Hynson JL, Kornberg AJ, Coleman LT, Shield L, Harvey AS, Kean MJ. Clinical and neuroradiologic features of acute disseminated encephalomyelitis in children. Neurology 2001; 56 (10) 1308-1312
  • 89 Desai J, Mitchell WG. Acute cerebellar ataxia, acute cerebellitis, and opsoclonus-myoclonus syndrome. J Child Neurol 2012; 27 (11) 1482-1488
  • 90 Singhi P, Sahu JK, Sarkar J, Bansal D. Clinical profile and outcome of children with opsoclonus-myoclonus syndrome. J Child Neurol 2014; 29 (01) 58-61
  • 91 Gorman MP. Update on diagnosis, treatment, and prognosis in opsoclonus-myoclonus-ataxia syndrome. Curr Opin Pediatr 2010; 22 (06) 745-750
  • 92 Pruitt AA. Infections of the cerebellum. Neurol Clin 2014; 32 (04) 1117-1131
  • 93 Lancella L, Esposito S, Galli ML. , et al. Acute cerebellitis in children: an eleven year retrospective multicentric study in Italy. Ital J Pediatr 2017; 43 (01) 54
  • 94 Kornreich L, Shkalim-Zemer V, Levinsky Y, Abdallah W, Ganelin-Cohen E, Straussberg R. Acute cerebellitis in children: a many-faceted disease. J Child Neurol 2016; 31 (08) 991-997
  • 95 Pollack IF. Ataxia resulting from posterior fossa tumors of childhood and other mass lesions. Handb Clin Neurol 2012; 103: 161-173
  • 96 Ouahchi K, Arita M, Kayden H. , et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the α-tocopherol transfer protein. Nat Genet 1995; 9 (02) 141-145
  • 97 Cavalier L, Ouahchi K, Kayden HJ. , et al. Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 1998; 62 (02) 301-310
  • 98 Gabsi S, Gouider-Khouja N, Belal S. , et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 2001; 8 (05) 477-481
  • 99 Pope S, Artuch R, Heales S, Rahman S. Cerebral folate deficiency: analytical tests and differential diagnosis. J Inherit Metab Dis 2019; 42 (04) 655-672
  • 100 Ramaekers VT, Blau N. Cerebral folate deficiency. Dev Med Child Neurol 2004; 46 (12) 843-851
  • 101 Gordon N. Cerebral folate deficiency. Dev Med Child Neurol 2009; 51 (03) 180-182
  • 102 Sahama I, Sinclair K, Pannek K, Lavin M, Rose S. Radiological imaging in ataxia telangiectasia: a review. Cerebellum 2014; 13 (04) 521-530
  • 103 Devaney R, Pasalodos S, Suri M, Bush A, Bhatt JM. Ataxia telangiectasia: presentation and diagnostic delay. Arch Dis Child 2017; 102 (04) 328-330
  • 104 Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis 2016; 11 (01) 159
  • 105 Nissenkorn A, Hassin-Baer S, Lerman SF, Levi YB, Tzadok M, Ben-Zeev B. Movement disorder in ataxia-telangiectasia: treatment with amantadine sulfate. J Child Neurol 2013; 28 (02) 155-160
  • 106 Shaikh AG, Marti S, Tarnutzer AA. , et al. Effects of 4-aminopyridine on nystagmus and vestibulo-ocular reflex in ataxia-telangiectasia. J Neurol 2013; 260 (11) 2728-2735
  • 107 Zannolli R, Buoni S, Betti G. , et al. A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord 2012; 27 (10) 1312-1316
  • 108 Cirillo E, Del Giudice E, Micheli R. , et al. Minimum effective betamethasone dosage on the neurological phenotype in patients with ataxia-telangiectasia: a multicenter observer-blind study. Eur J Neurol 2018; 25 (06) 833-840
  • 109 van Os NJH, Haaxma CA, van der Flier M. , et al; A-T Study Group. Ataxia-telangiectasia: recommendations for multidisciplinary treatment. Dev Med Child Neurol 2017; 59 (07) 680-689
  • 110 Roze E, Apartis E, Clot F. , et al. Myoclonus-dystonia: clinical and electrophysiologic pattern related to SGCE mutations. Neurology 2008; 70 (13) 1010-1016
  • 111 Hainque E, Vidailhet M, Cozic N. , et al. A randomized, controlled, double-blind, crossover trial of zonisamide in myoclonus-dystonia. Neurology 2016; 86 (18) 1729-1735
  • 112 Rughani AI, Lozano AM. Surgical treatment of myoclonus dystonia syndrome. Mov Disord 2013; 28 (03) 282-287
  • 113 Magariños-Ascone CM, Regidor I, Martínez-Castrillo JC, Gómez-Galán M, Figueiras-Méndez R. Pallidal stimulation relieves myoclonus-dystonia syndrome. J Neurol Neurosurg Psychiatry 2005; 76 (07) 989-991
  • 114 Gruber D, Kühn AA, Schoenecker T. , et al. Pallidal and thalamic deep brain stimulation in myoclonus-dystonia. Mov Disord 2010; 25 (11) 1733-1743
  • 115 Kurtis MM, San Luciano M, Yu Q. , et al. Clinical and neurophysiological improvement of SGCE myoclonus-dystonia with GPi deep brain stimulation. Clin Neurol Neurosurg 2010; 112 (02) 149-152
  • 116 Yin X-M, Lin J-H, Cao L. , et al. Familial paroxysmal kinesigenic dyskinesia is associated with mutations in the KCNA1 gene. Hum Mol Genet 2018; 27 (04) 625-637
  • 117 Huang X-J, Wang T, Wang J-L. , et al. Paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 110 patients. Neurology 2015; 85 (18) 1546-1553
  • 118 Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain 2015; 138 (Pt 12): 3476-3495
  • 119 Klein C, Lohmann K, Marras C, Münchau A. Hereditary Dystonia Overview. University of Washington; Seattle: 1993. . Available at: http://www.ncbi.nlm.nih.gov/pubmed/20301334 . Accessed April 28, 2019
  • 120 Roze E, Lang AE, Vidailhet M. Myoclonus-dystonia: classification, phenomenology, pathogenesis, and treatment. Curr Opin Neurol 2018; 31 (04) 484-490
  • 121 Graus F, Titulaer MJ, Balu R. , et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016; 15 (04) 391-404
  • 122 Mohammad SS, Fung VSC, Grattan-Smith P. , et al. Movement disorders in children with anti-NMDAR encephalitis and other autoimmune encephalopathies. Mov Disord 2014; 29 (12) 1539-1542
  • 123 Varley JA, Webb AJS, Balint B. , et al. The movement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. J Neurol Neurosurg Psychiatry 2019; 90 (06) 724-726
  • 124 Florance NR, Davis RL, Lam C. , et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol 2009; 66 (01) 11-18
  • 125 Gresa-Arribas N, Titulaer MJ, Torrents A. , et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol 2014; 13 (02) 167-177
  • 126 Titulaer MJ, McCracken L, Gabilondo I. , et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013; 12 (02) 157-165