Semin Musculoskelet Radiol 2019; 23(05): 489-496
DOI: 10.1055/s-0039-1693976
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Vertebrae, Vertebral End Plates, and Disks: Concepts and Specific Pathologies

Alexandra S. Gersing
1   Department of Radiology, School of Medicine, Technical University of Munich, Munich, Germany
,
Klaus Woertler
1   Department of Radiology, School of Medicine, Technical University of Munich, Munich, Germany
,
Pia M. Jungmann
2   Department of Radiology, University of Freiburg, Freiburg, Germany
,
Christine Bollwein
3   Department of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
,
Benedikt J. Schwaiger
1   Department of Radiology, School of Medicine, Technical University of Munich, Munich, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
25 September 2019 (online)

Abstract

Vertebral end plates cover the osseous vertebral body. The integrity of the cartilaginous end plates is of great importance for the entire vertebral segment because the vascularized end plate provides the nutrition for the avascular disk. Yet several pathologies may occur at these end plates at the embryonic stage, in childhood to adolescence (e.g., ossification and segmentation disorders of the spine, persistent notochord, slippage of the growth plate), as well as in the mature spine of an adult (degenerative disk disease), that may impact the integrity of the cartilaginous end plate and therefore lead to severe diseases of the spine. This article reviews specific congenital, developmental, and degenerative disorders of the vertebral end plate as well as both established and newly introduced imaging techniques, such as ultrashort echo time imaging based on magnetic resonance imaging, that are suitable for imaging of the end plate.

 
  • References

  • 1 Roberts S, Menage J, Urban JP. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 1989; 14 (02) 166-174
  • 2 Moore RJ. The vertebral end-plate: what do we know?. Eur Spine J 2000; 9: 92-96
  • 3 Edwards WT, Zheng Y, Ferrara LA, Yuan HA. Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 2001; 26 (02) 218-225
  • 4 Taylor JR. Growth of human intervertebral discs and vertebral bodies. J Anat 1975; 120 (Pt 1): 49-68
  • 5 Inoue H. Three-dimensional architecture of lumbar intervertebral discs. Spine 1981; 6 (02) 139-146
  • 6 Broberg KB. On the mechanical behaviour of intervertebral discs. Spine 1983; 8 (02) 151-165
  • 7 Brodin H. Paths of nutrition in articular cartilage and intervertebral discs. Acta Orthop Scand 1955; 24 (03) 177-183
  • 8 Urban JP, Holm S, Maroudas A. Diffusion of small solutes into the intervertebral disc: as in vivo study. Biorheology 1978; 15 (3-4): 203-221
  • 9 Urban JP, Holm S, Maroudas A, Nachemson A. Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res 1982; (170) 296-302
  • 10 Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A. Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 1981; 8 (02) 101-119
  • 11 Bernick S, Cailliet R. Vertebral end-plate changes with aging of human vertebrae. Spine 1982; 7 (02) 97-102
  • 12 Oda J, Tanaka H, Tsuzuki N. Intervertebral disc changes with aging of human cervical vertebra. From the neonate to the eighties. Spine 1988; 13 (11) 1205-1211
  • 13 van der Werf M, Lezuo P, Maissen O, van Donkelaar CC, Ito K. Inhibition of vertebral endplate perfusion results in decreased intervertebral disc intranuclear diffusive transport. J Anat 2007; 211 (06) 769-774
  • 14 Moon SM, Yoder JH, Wright AC, Smith LJ, Vresilovic EJ, Elliott DM. Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur Spine J 2013; 22 (08) 1820-1828
  • 15 Bae WC, Statum S, Zhang Z. , et al. Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology 2013; 266 (02) 564-574
  • 16 Berg-Johansen B, Han M, Fields AJ. , et al. Cartilage endplate thickness variation measured by ultrashort echo-time MRI is associated with adjacent disc degeneration. Spine 2018; 43 (10) E592-E600
  • 17 Ross JS, Brant-Zawadzki M, Moore KR. , et al. Diagnostic Imaging: Spine. Salt Lake City, UT: Amirsys; 2004
  • 18 Rossi A, Biancheri R, Cama A, Piatelli G, Ravegnani M, Tortori-Donati P. Imaging in spine and spinal cord malformations. Eur J Radiol 2004; 50 (02) 177-200
  • 19 Jinkins JR. Atlas of Neuroradiologic Embryology, Anatomy, and Variants. Philadelphia, PA: Lippincott Williams & Wilkins; 2000
  • 20 Arlet V, Odent T, Aebi M. Congenital scoliosis. Eur Spine J 2003; 12 (05) 456-463
  • 21 Tortori-Donati P, Rossi A, Biancheri R, Cama A. Magnetic resonance imaging of spinal dysraphism. Top Magn Reson Imaging 2001; 12 (06) 375-409
  • 22 Swischuk LE, John SD, Allbery S. Disk degenerative disease in childhood: Scheuermann's disease, Schmorl's nodes, and the limbus vertebra: MRI findings in 12 patients. Pediatr Radiol 1998; 28 (05) 334-338
  • 23 Peng B, Wu W, Hou S, Shang W, Wang X, Yang Y. The pathogenesis of Schmorl's nodes. J Bone Joint Surg Br 2003; 85 (06) 879-882
  • 24 Mattei TA, Rehman AA. Schmorl's nodes: current pathophysiological, diagnostic, and therapeutic paradigms. Neurosurg Rev 2014; 37 (01) 39-46
  • 25 Klimo Jr P, Rao G, Brockmeyer D. Congenital anomalies of the cervical spine. Neurosurg Clin N Am 2007; 18 (03) 463-478
  • 26 Wenger DR, Frick SL. Scheuermann kyphosis. Spine 1999; 24 (24) 2630-2639
  • 27 Faingold R, Saigal G, Azouz EM, Morales A, Albuquerque PA. Imaging of low back pain in children and adolescents. Semin Ultrasound CT MR 2004; 25 (06) 490-505
  • 28 Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet 2017; 390 (10089): 73-84
  • 29 Bron JL, de Vries MK, Snieders MN, van der Horst-Bruinsma IE, van Royen BJ. Discovertebral (Andersson) lesions of the spine in ankylosing spondylitis revisited. Clin Rheumatol 2009; 28 (08) 883-892
  • 30 Braun J, Baraliakos X, Buehring B, Kiltz U, Fruth M. Imaging of axial spondyloarthritis. New aspects and differential diagnoses. Clin Exp Rheumatol 2018; 36 (05) (Suppl. 114) 35-42
  • 31 Chrzan R, Podsiadlo L, Herman-Sucharska I, Urbanik A, Bryll A. Persistent notochordal canal imitating compression fracture--plain film, CT and MR appearance. Med Sci Monit 2010; 16 (06) CS76-CS79
  • 32 Christopherson LR, Rabin BM, Hallam DK, Russell EJ. Persistence of the notochordal canal: MR and plain film appearance. AJNR Am J Neuroradiol 1999; 20 (01) 33-36
  • 33 Cotten A, Deprez X, Lejeune JP, Chastanet P, Francke JP, Clarisse J. Persistence of the notochordal canal: plain film and CT findings. Neuroradiology 1995; 37 (04) 308-310
  • 34 Reuther G, Mutschler W. Intervertebral persistence of the notochord cana. l] [in German]. RoFo Fortschr Geb Rontgenstr Nuklearmed 1990; 152 (01) 113-114
  • 35 Oner AY, Akpek S, Tokgoz N. Persistent notochordal canal mimicking compression fracture: a case report. Acta Radiol 2006; 47 (08) 875-877
  • 36 Sairyo K, Katoh S, Sasa T. , et al. Athletes with unilateral spondylolysis are at risk of stress fracture at the contralateral pedicle and pars interarticularis: a clinical and biomechanical study. Am J Sports Med 2005; 33 (04) 583-590
  • 37 Sairyo K, Katoh S, Sakamaki T, Komatsubara S, Endo K, Yasui N. Three successive stress fractures at the same vertebral level in an adolescent baseball player. Am J Sports Med 2003; 31 (04) 606-610
  • 38 Fujii K, Katoh S, Sairyo K, Ikata T, Yasui N. Union of defects in the pars interarticularis of the lumbar spine in children and adolescents. The radiological outcome after conservative treatment. J Bone Joint Surg Br 2004; 86 (02) 225-231
  • 39 Wiltse LL, Widell Jr EH, Jackson DW. Fatigue fracture: the basic lesion is inthmic spondylolisthesis. J Bone Joint Surg Am 1975; 57 (01) 17-22
  • 40 Laurent LE, Osterman K. Operative treatment of spondylolisthesis in young patients. Clin Orthop Relat Res 1976; (117) 85-91
  • 41 Boxall D, Bradford DS, Winter RB, Moe JH. Management of severe spondylolisthesis in children and adolescents. J Bone Joint Surg Am 1979; 61 (04) 479-495
  • 42 Seitsalo S, Osterman K, Hyvãrinen H, Tallroth K, Schlenzka D, Poussa M. Progression of spondylolisthesis in children and adolescents. A long-term follow-up of 272 patients. Spine 1991; 16 (04) 417-421
  • 43 Turner RH, Bianco Jr AJ. Spondylolysis and spondylolisthesis in children and teen-agers. J Bone Joint Surg Am 1971; 53 (07) 1298-1306
  • 44 Sairyo K, Sakai T, Yasui N. Conservative treatment of lumbar spondylolysis in childhood and adolescence: the radiological signs which predict healing. J Bone Joint Surg Br 2009; 91 (02) 206-209
  • 45 Sairyo K, Katoh S, Takata Y. , et al. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents: a clinical and biomechanical study. Spine 2006; 31 (02) 206-211
  • 46 Sairyo K, Sakai T, Yasui N, Dezawa A. Conservative treatment for pediatric lumbar spondylolysis to achieve bone healing using a hard brace: what type and how long? Clinical article. J Neurosurg Spine 2012; 16 (06) 610-614
  • 47 Sakai T, Sairyo K, Mima S, Yasui N. Significance of magnetic resonance imaging signal change in the pedicle in the management of pediatric lumbar spondylolysis. Spine 2010; 35 (14) E641-E645
  • 48 Sairyo K, Katoh S, Ikata T, Fujii K, Kajiura K, Goel VK. Development of spondylolytic olisthesis in adolescents. Spine J 2001; 1 (03) 171-175
  • 49 Ikata T, Miyake R, Katoh S, Morita T, Murase M. Pathogenesis of sports-related spondylolisthesis in adolescents. Radiographic and magnetic resonance imaging study. Am J Sports Med 1996; 24 (01) 94-98
  • 50 Laurent LE, Einola S. Spondylolisthesis in children and adolescents. Acta Orthop Scand 1961; 31: 45-64
  • 51 Kajiura K, Katoh S, Sairyo K, Ikata T, Goel VK, Murakami RI. Slippage mechanism of pediatric spondylolysis: biomechanical study using immature calf spines. Spine 2001; 26 (20) 2208-2212 ; discussion 2212–2213
  • 52 Sairyo K, Nagamachi A, Matsuura T. , et al. A review of the pathomechanism of forward slippage in pediatric spondylolysis: the Tokushima theory of growth plate slippage. J Med Invest 2015; 62 (1-2): 11-18
  • 53 Nachemson A, Lewin T, Maroudas A, Freeman MA. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 1970; 41 (06) 589-607
  • 54 Aigner T, Gresk-otter KR, Fairbank JC, von der Mark K, Urban JP. Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. Calcif Tissue Int 1998; 63 (03) 263-268
  • 55 Moore RJ. The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J 2006; 15 (Suppl. 03) S333-S337
  • 56 Ariga K, Miyamoto S, Nakase T. , et al. The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine 2001; 26 (22) 2414-2420
  • 57 de Roos A, Kressel H, Spritzer C, Dalinka M. MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. AJR Am J Roentgenol 1987; 149 (03) 531-534
  • 58 Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988; 166 (1 Pt 1): 193-199
  • 59 Modic MT, Masaryk TJ, Ross JS, Carter JR. Imaging of degenerative disk disease. Radiology 1988; 168 (01) 177-186
  • 60 Swischuk LE, Jubang M, Jadhav SP. Calcific discitis in children: vertebral body involvement (possible insight into etiology). Emerg Radiol 2008; 15 (06) 427-430
  • 61 Azizaddini S, Arefanian S, Redjal N, Walcott BP, Mollahoseini R. Adult acute calcific discitis confined to the nucleus pulposus in the cervical spine: case report. J Neurosurg Spine 2013; 19 (02) 170-173
  • 62 Bazzi J, Dimar JR, Glassman SD. Acute calcific discitis in adults. Am J Orthop 2002; 31 (03) 141-145
  • 63 Nogueira-Barbosa MH, da Silva Herrero CF, Pasqualini W, Defino HL. Calcific discitis in an adult patient with intravertebral migration and spontaneous remission. Skeletal Radiol 2013; 42 (08) 1161-1164
  • 64 Sonnabend DH, Taylor TK, Chapman GK. Intervertebral disc calcification syndromes in children. J Bone Joint Surg Br 1982; 64 (01) 25-31
  • 65 Melnick JC, Silverman FN. Intervertebral disk calcification in childhood. Radiology 1963; 80: 399-408
  • 66 Swischuk LE, Stansberry SD. Calcific discitis: MRI changes in discs without visible calcification. Pediatr Radiol 1991; 21 (05) 365-366
  • 67 Mittal P, Saggar K, Sandhu P, Gupta K. Case report: Acute calcific discitis with intravertebral disc herniation in the dorsolumbar spine. Indian J Radiol Imaging 2010; 20 (03) 205-207
  • 68 Diehn FE, Maus TP, Morris JM. , et al. Uncommon manifestations of intervertebral disk pathologic conditions. Radiographics 2016; 36 (03) 801-823