Semin Liver Dis 2019; 39(04): 463-475
DOI: 10.1055/s-0039-1688442
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Competing Endogenous RNAs in Hepatocellular Carcinoma—The Pinnacle of Rivalry

Abdelrahman Yousry Afify
1   School of Medicine, Newgiza University (NGU), Giza, Egypt
,
Salma Abdulmaqsoud Ibrahim
1   School of Medicine, Newgiza University (NGU), Giza, Egypt
,
Mennah Hisham Aldamsisi
1   School of Medicine, Newgiza University (NGU), Giza, Egypt
,
Mai Saad Zaghloul
1   School of Medicine, Newgiza University (NGU), Giza, Egypt
,
Nada El-Ekiaby
1   School of Medicine, Newgiza University (NGU), Giza, Egypt
,
Ahmed Ihab Abdelaziz
1   School of Medicine, Newgiza University (NGU), Giza, Egypt
› Author Affiliations
Further Information

Publication History

Publication Date:
26 June 2019 (online)

Abstract

The role of noncoding transcripts in gene expression is nowadays acknowledged to keep various diseases at bay—despite being referred to as “junk” DNA several years ago. Believed to be at the heart of multiple regulatory pathways, microRNAs (miRNAs) are small noncoding RNAs (ncRNAs) involved in posttranscriptional gene regulation. Recently, the discovery of ncRNAs that compete for shared miRNA pools has dimmed the light on the solo performance of miRNAs in genomic regulation. Indeed, several studies describe RNAs such as long noncoding RNAs, mRNAs, circular RNAs, pseudogenes, and viral RNAs as competing endogenous RNAs (ceRNAs) that sequester miRNAs, allowing for de-repression of downstream miRNA targets. Such integration between coding and noncoding transcripts forms complex ceRNA networks that when dysregulated lead to several diseases such as hepatocellular carcinoma. Here, the authors review perturbed ceRNA networks in hepatocellular carcinoma, describe the role of each in tumorigenesis, and discuss their various clinical implications.

Authors' Contribution

Afify A.Y., Ibrahim S.A., and Aldamsisi M.H. collected the data and wrote the manuscript. El-Ekiaby N., Saad Zaghloul M., and Abdelaziz A.I. revised and critically appraised the manuscript.


 
  • References

  • 1 Wong CM, Tsang FH, Ng IO. Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 2018; 15 (03) 137-151
  • 2 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136 (02) 215-233
  • 3 Sun J, Lu H, Wang X, Jin H. MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. ScientificWorldJournal 2013; 2013: 924206
  • 4 Sen R, Ghosal S, Das S, Balti S, Chakrabarti J. Competing endogenous RNA: the key to posttranscriptional regulation. ScientificWorldJournal 2014; 2014: 896206
  • 5 Yang C, Wu D, Gao L. , et al. Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives. Oncotarget 2016; 7 (12) 13479-13490
  • 6 Sanchez-Mejias A, Tay Y. Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics. J Hematol Oncol 2015; 8: 30
  • 7 Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 2014; 56 (03) 347-359
  • 8 Broderick JA, Zamore PD. Competitive endogenous RNAs cannot alter microRNA function in vivo. Mol Cell 2014; 54 (05) 711-713
  • 9 Hansen TB, Jensen TI, Clausen BH. , et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495 (7441): 384-388
  • 10 Memczak S, Jens M, Elefsinioti A. , et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495 (7441): 333-338
  • 11 Goriki A, Seiler R, Wyatt AW. , et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol 2018; 15 (06) 345-357
  • 12 Li J, Pu W, Sun HL. , et al. Pin1 impairs microRNA biogenesis by mediating conformation change of XPO5 in hepatocellular carcinoma. Cell Death Differ 2018; 25 (09) 1612-1624
  • 13 Kumar R, Cheok CF. Dynamics of RIF1 SUMOylation is regulated by PIAS4 in the maintenance of genomic stability. Sci Rep 2017; 7 (01) 17367
  • 14 Sadej R, Grudowska A, Turczyk L, Kordek R, Romanska HM. CD151 in cancer progression and metastasis: a complex scenario. Lab Invest 2014; 94 (01) 41-51
  • 15 Yang ZP, Ma HS, Wang SS, Wang L, Liu T. LAMC1 mRNA promotes malignancy of hepatocellular carcinoma cells by competing for MicroRNA-124 binding with CD151. IUBMB Life 2017; 69 (08) 595-605
  • 16 Liu T, Zu CH, Wang SS. , et al. PIK3C2A mRNA functions as a miR-124 sponge to facilitate CD151 expression and enhance malignancy of hepatocellular carcinoma cells. Oncotarget 2016; 7 (28) 43376-43389
  • 17 de Boer WB, Segal A, Frost FA, Sterrett GF. Can CD34 discriminate between benign and malignant hepatocytic lesions in fine-needle aspirates and thin core biopsies?. Cancer 2000; 90 (05) 273-278
  • 18 Fang L, Du WW, Yang X. , et al. Versican 3′-untranslated region (3′-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity. FASEB J 2013; 27 (03) 907-919
  • 19 Zhang H, Wang F, Hu Y. STARD13 promotes hepatocellular carcinoma apoptosis by acting as a ceRNA for Fas. Biotechnol Lett 2017; 39 (02) 207-217
  • 20 Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281 (5381): 1305-1308
  • 21 Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006; 15 (Spec No 1): R17-R29
  • 22 Gontan C, Jonkers I, Gribnau J. Long noncoding RNAs and X chromosome inactivation. Prog Mol Subcell Biol 2011; 51: 43-64
  • 23 Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 2016; 14 (01) 42-54
  • 24 Zhang Q, Matsuura K, Kleiner DE, Zamboni F, Alter HJ, Farci P. Analysis of long noncoding RNA expression in hepatocellular carcinoma of different viral etiology. J Transl Med 2016; 14 (01) 328
  • 25 Cui H, Zhang Y, Zhang Q, Chen W, Zhao H, Liang J. A comprehensive genome-wide analysis of long noncoding RNA expression profile in hepatocellular carcinoma. Cancer Med 2017; 6 (12) 2932-2941
  • 26 Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19 (02) 156-172
  • 27 Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 2006; 174 (02) 175-183
  • 28 Fu N, Niu X, Wang Y. , et al. Role of LncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis. Discov Med 2016; 22 (119) 29-42
  • 29 Wang Y, Chen F, Zhao M. , et al. The long noncoding RNA HULC promotes liver cancer by increasing the expression of the HMGA2 oncogene via sequestration of the microRNA-186. J Biol Chem 2017; 292 (37) 15395-15407
  • 30 Li SP, Xu HX, Yu Y. , et al. LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget 2016; 7 (27) 42431-42446
  • 31 Lu S, Zhou J, Sun Y. , et al. The noncoding RNA HOXD-AS1 is a critical regulator of the metastasis and apoptosis phenotype in human hepatocellular carcinoma. Mol Cancer 2017; 16 (01) 125
  • 32 Liu Z, Wei X, Zhang A, Li C, Bai J, Dong J. Long non-coding RNA HNF1A-AS1 functioned as an oncogene and autophagy promoter in hepatocellular carcinoma through sponging hsa-miR-30b-5p. Biochem Biophys Res Commun 2016; 473 (04) 1268-1275
  • 33 Li S, Huang Y, Huang Y. , et al. The long non-coding RNA TP73-AS1 modulates HCC cell proliferation through miR-200a-dependent HMGB1/RAGE regulation. J Exp Clin Cancer Res 2017; 36 (01) 51
  • 34 Xiao JN, Yan TH, Yu RM. , et al. Long non-coding RNA UCA1 regulates the expression of Snail2 by miR-203 to promote hepatocellular carcinoma progression. J Cancer Res Clin Oncol 2017; 143 (06) 981-990
  • 35 Yan X, Zhang D, Wu W. , et al. Mesenchymal stem cells promote hepatocarcinogenesis via lncRNA-MUF interaction with ANXA2 and miR-34a. Cancer Res 2017; 77 (23) 6704-6716
  • 36 Lv J, Fan HX, Zhao XP. , et al. Long non-coding RNA Unigene56159 promotes epithelial-mesenchymal transition by acting as a ceRNA of miR-140-5p in hepatocellular carcinoma cells. Cancer Lett 2016; 382 (02) 166-175
  • 37 Pugazhenthi S, Nesterova A, Sable C. , et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000; 275 (15) 10761-10766
  • 38 Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer 2009; 125 (12) 2863-2870
  • 39 Liu D, Zhu Y, Pang J, Weng X, Feng X, Guo Y. Knockdown of long non-coding RNA MALAT1 inhibits growth and motility of human hepatoma cells via modulation of miR-195. J Cell Biochem 2018; 119 (02) 1368-1380
  • 40 Li C, Miao R, Liu S. , et al. Down-regulation of miR-146b-5p by long noncoding RNA MALAT1 in hepatocellular carcinoma promotes cancer growth and metastasis. Oncotarget 2017; 8 (17) 28683-28695
  • 41 Wang H, Huo X, Yang XR. , et al. STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer 2017; 16 (01) 136
  • 42 Ma J, Li T, Han X, Yuan H. Knockdown of LncRNA ANRIL suppresses cell proliferation, metastasis, and invasion via regulating miR-122-5p expression in hepatocellular carcinoma. J Cancer Res Clin Oncol 2018; 144 (02) 205-214
  • 43 Li J, Zhang Q, Fan X. , et al. The long noncoding RNA TUG1 acts as a competing endogenous RNA to regulate the Hedgehog pathway by targeting miR-132 in hepatocellular carcinoma. Oncotarget 2017; 8 (39) 65932-65945
  • 44 Li T, Xie J, Shen C. , et al. Amplification of long noncoding RNA ZFAS1 promotes Metastasis in hepatocellular carcinoma. Cancer Res 2015; 75 (15) 3181-3191
  • 45 Zhang XN, Zhou J, Lu XJ. The long noncoding RNA NEAT1 contributes to hepatocellular carcinoma development by sponging miR-485 and enhancing the expression of the STAT3. J Cell Physiol 2018; 233 (09) 6733-6741
  • 46 Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273 (22) 13375-13378
  • 47 Hu B, Cai H, Zheng R, Yang S, Zhou Z, Tu J. Long non-coding RNA 657 suppresses hepatocellular carcinoma cell growth by acting as a molecular sponge of miR-106a-5p to regulate PTEN expression. Int J Biochem Cell Biol 2017; 92: 34-42
  • 48 Chang S, Chen B, Wang X, Wu K, Sun Y. Long non-coding RNA XIST regulates PTEN expression by sponging miR-181a and promotes hepatocellular carcinoma progression. BMC Cancer 2017; 17 (01) 248
  • 49 Sui J, Yang X, Qi W. , et al. Long non-coding RNA Linc-USP16 functions as a tumour suppressor in hepatocellular carcinoma by regulating PTEN expression. Cell Physiol Biochem 2017; 44 (03) 1188-1198
  • 50 Hu L, Ye H, Huang G. , et al. Long noncoding RNA GAS5 suppresses the migration and invasion of hepatocellular carcinoma cells via miR-21. Tumour Biol 2016; 37 (02) 2691-2702
  • 51 Wang Y, Liu Z, Yao B. , et al. Long non-coding RNA CASC2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CASC2/miR-367/FBXW7 axis. Mol Cancer 2017; 16 (01) 123
  • 52 Fan JC, Zeng F, Le YG, Xin L. LncRNA CASC2 inhibited the viability and induced the apoptosis of hepatocellular carcinoma cells through regulating miR-24-3p. J Cell Biochem 2018; 119 (08) 6391-6397
  • 53 Wang Y, Liu Z, Yao B. , et al. Long non-coding RNA TUSC7 acts a molecular sponge for miR-10a and suppresses EMT in hepatocellular carcinoma. Tumour Biol 2016; 37 (08) 11429-11441
  • 54 Liu F, Yuan JH, Huang JF. , et al. Long noncoding RNA FTX inhibits hepatocellular carcinoma proliferation and metastasis by binding MCM2 and miR-374a. Oncogene 2016; 35 (41) 5422-5434
  • 55 Xiong H, Ni Z, He J. , et al. LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells. Oncogene 2017; 36 (25) 3528-3540
  • 56 Yu Y, Nangia-Makker P, Farhana L, Majumdar APN. A novel mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145 expression by suppressing its maturation process in colon cancer cells. Mol Cancer 2017; 16 (01) 155
  • 57 Wang Y, Hu Y, Wu G. , et al. Long noncoding RNA PCAT-14 induces proliferation and invasion by hepatocellular carcinoma cells by inducing methylation of miR-372. Oncotarget 2017; 8 (21) 34429-34441
  • 58 Leucci E, Patella F, Waage J. , et al. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci Rep 2013; 3: 2535
  • 59 Gernapudi R, Wolfson B, Zhang Y. , et al. MicroRNA 140 promotes expression of long noncoding RNA NEAT1 in adipogenesis. Mol Cell Biol 2015; 36 (01) 30-38
  • 60 Capel B, Swain A, Nicolis S. , et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993; 73 (05) 1019-1030
  • 61 Ashwal-Fluss R, Meyer M, Pamudurti NR. , et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014; 56 (01) 55-66
  • 62 Du WW, Fang L, Yang W. , et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 2017; 24 (02) 357-370
  • 63 Kristensen LS, Hansen TB, Venø MT, Kjems J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 2018; 37 (05) 555-565
  • 64 Thomas LF, Sætrom P. Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics 2014; 30 (16) 2243-2246
  • 65 Liu X, Abraham JM, Cheng Y. , et al. Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol Ther Nucleic Acids 2018; 13: 312-321
  • 66 Zhu Q, Lu G, Luo Z. , et al. CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/β-catenin axis. Biochem Biophys Res Commun 2018; 497 (02) 626-632
  • 67 Yang X, Xiong Q, Wu Y, Li S, Ge F. Quantitative proteomics reveals the regulatory networks of circular RNA CDR1as in hepatocellular carcinoma cells. J Proteome Res 2017; 16 (10) 3891-3902
  • 68 Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One 2016; 11 (07) e0158347
  • 69 Han D, Li J, Wang H. , et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 2017; 66 (04) 1151-1164
  • 70 Yu J, Xu QG, Wang ZG. , et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol 2018; 68 (06) 1214-1227
  • 71 Fu L, Chen Q, Yao T. , et al. Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma. Oncotarget 2017; 8 (27) 43878-43888
  • 72 Jacq C, Miller JR, Brownlee GG. A pseudogene structure in 5S DNA of Xenopus laevis. Cell 1977; 12 (01) 109-120
  • 73 Harrow J, Frankish A, Gonzalez JM. , et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012; 22 (09) 1760-1774
  • 74 Cooke SL, Shlien A, Marshall J. , et al; ICGC Breast Cancer Group. Processed pseudogenes acquired somatically during cancer development. Nat Commun 2014; 5: 3644
  • 75 Kalyana-Sundaram S, Kumar-Sinha C, Shankar S. , et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell 2012; 149 (07) 1622-1634
  • 76 Puget N, Gad S, Perrin-Vidoz L. , et al. Distinct BRCA1 rearrangements involving the BRCA1 pseudogene suggest the existence of a recombination hot spot. Am J Hum Genet 2002; 70 (04) 858-865
  • 77 Vanin EF. Processed pseudogenes: characteristics and evolution. Annu Rev Genet 1985; 19: 253-272
  • 78 Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M. Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates. Genome Biol 2010; 11 (03) R26
  • 79 Peng H, Ishida M, Li L. , et al. Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of miR-17-5p in hepatocellular carcinoma. Oncotarget 2015; 6 (08) 5666-5677
  • 80 Poursani EM, Mohammad Soltani B, Mowla SJ. Differential expression of OCT4 pseudogenes in pluripotent and tumor cell lines. Cell J 2016; 18 (01) 28-36
  • 81 Wang L, Guo ZY, Zhang R. , et al. Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 2013; 34 (08) 1773-1781
  • 82 Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122--a key factor and therapeutic target in liver disease. J Hepatol 2015; 62 (02) 448-457
  • 83 Hu J, Xu Y, Hao J, Wang S, Li C, Meng S. MiR-122 in hepatic function and liver diseases. Protein Cell 2012; 3 (05) 364-371
  • 84 Bogerd HP, Skalsky RL, Kennedy EM. , et al. Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs. J Virol 2014; 88 (14) 8065-8076
  • 85 Xiong Y, Zhang C, Yuan J. , et al. Hepatitis C virus represses the cellular antiviral response by upregulating the expression of signal transducer and activator of transcription 3 through sponging microRNA‑122. Mol Med Rep 2015; 11 (03) 1733-1737
  • 86 Zhao L, Li F, Taylor EW. Can tobacco use promote HCV-induced miR-122 hijacking and hepatocarcinogenesis?. Med Hypotheses 2013; 80 (02) 131-133
  • 87 Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009; 28 (40) 3526-3536
  • 88 Li C, Wang Y, Wang S. , et al. Hepatitis B virus mRNA-mediated miR-122 inhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cell invasion. J Virol 2013; 87 (04) 2193-2205
  • 89 Liu N, Jiao T, Huang Y, Liu W, Li Z, Ye X. Hepatitis B virus regulates apoptosis and tumorigenesis through the microRNA-15a-Smad7-transforming growth factor beta pathway. J Virol 2015; 89 (05) 2739-2749
  • 90 Liu N, Zhang J, Jiao T. , et al. Hepatitis B virus inhibits apoptosis of hepatoma cells by sponging the MicroRNA 15a/16 cluster. J Virol 2013; 87 (24) 13370-13378
  • 91 Liang HW, Wang N, Wang Y. , et al. Hepatitis B virus-human chimeric transcript HBx-LINE1 promotes hepatic injury via sequestering cellular microRNA-122. J Hepatol 2016; 64 (02) 278-291
  • 92 Bruix J, Raoul JL, Sherman M. , et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J Hepatol 2012; 57 (04) 821-829
  • 93 Raza A, Sood GK. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol 2014; 20 (15) 4115-4127
  • 94 Fateen W, Ryder SD. Screening for hepatocellular carcinoma: patient selection and perspectives. J Hepatocell Carcinoma 2017; 4: 71-79
  • 95 El-Tawdi AH, Matboli M, El-Nakeep S, Azazy AE, Abdel-Rahman O. Association of long noncoding RNA and c-JUN expression in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2016; 10 (07) 869-877
  • 96 Li LM, Hu ZB, Zhou ZX. , et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res 2010; 70 (23) 9798-9807
  • 97 Shao T, Wu A, Chen J. , et al. Identification of module biomarkers from the dysregulated ceRNA-ceRNA interaction network in lung adenocarcinoma. Mol Biosyst 2015; 11 (11) 3048-3058
  • 98 Zhou M, Diao Z, Yue X. , et al. Construction and analysis of dysregulated lncRNA-associated ceRNA network identified novel lncRNA biomarkers for early diagnosis of human pancreatic cancer. Oncotarget 2016; 7 (35) 56383-56394
  • 99 Zhang J, Fan D, Jian Z, Chen GG, Lai PB. Cancer specific long noncoding RNAs show differential expression patterns and competing endogenous RNA potential in hepatocellular carcinoma. PLoS One 2015; 10 (10) e0141042
  • 100 Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15 (08) 541-555
  • 101 Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 2010; 16 (11) 2043-2050
  • 102 Li X, Su Y, Sun B. , et al. An artificially designed interfering lncRNA expressed by oncolytic adenovirus competitively consumes oncomiRs to exert antitumor efficacy in hepatocellular carcinoma. Mol Cancer Ther 2016; 15 (07) 1436-1451
  • 103 Moshiri F, Callegari E, D'Abundo L. , et al. Inhibiting the oncogenic mir-221 by microRNA sponge: toward microRNA-based therapeutics for hepatocellular carcinoma. Gastroenterol Hepatol Bed Bench 2014; 7 (01) 43-54
  • 104 Chen CL, Wu JC, Chen GY. , et al. Baculovirus-mediated miRNA regulation to suppress hepatocellular carcinoma tumorigenicity and metastasis. Mol Ther 2015; 23 (01) 79-88
  • 105 Chen CL, Tseng YW, Wu JC. , et al. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials 2015; 44: 71-81
  • 106 Waidmann O, Trojan J. Novel drugs in clinical development for hepatocellular carcinoma. Expert Opin Investig Drugs 2015; 24 (08) 1075-1082
  • 107 Tang S, Tan G, Jiang X. , et al. An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget 2016; 7 (45) 73257-73269
  • 108 Nathwani AC, Tuddenham EG, Rangarajan S. , et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365 (25) 2357-2365
  • 109 Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 2014; 54 (05) 766-776
  • 110 Zhou T, Kim Y, MacLeod AR. Targeting long noncoding RNA with antisense oligonucleotide technology as cancer therapeutics. Methods Mol Biol 2016; 1402: 199-213
  • 111 Denzler R, McGeary SE, Title AC, Agarwal V, Bartel DP, Stoffel M. Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol Cell 2016; 64 (03) 565-579
  • 112 Huang XY, Huang ZL, Xu YH. , et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep 2017; 7 (01) 5428
  • 113 Zheng Q, Bao C, Guo W. , et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 2016; 7: 11215
  • 114 Chen G, Shi Y, Liu M, Sun J. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis 2018; 9 (02) 175
  • 115 Xie CR, Wang F, Zhang S. , et al. Long noncoding RNA HCAL facilitates the growth and metastasis of hepatocellular carcinoma by acting as a ceRNA of LAPTM4B. Mol Ther Nucleic Acids 2017; 9: 440-451
  • 116 Zhang D, Cao J, Zhong Q. , et al. Long noncoding RNA PCAT-1 promotes invasion and metastasis via the miR-129-5p-HMGB1 signaling pathway in hepatocellular carcinoma. Biomed Pharmacother 2017; 95: 1187-1193
  • 117 Fang L, Sun J, Pan Z. , et al. Long non-coding RNA NEAT1 promotes hepatocellular carcinoma cell proliferation through the regulation of miR-129-5p-VCP-IκB. Am J Physiol Gastrointest Liver Physiol 2017; 313 (02) G150-G156
  • 118 Chen L, Yao H, Wang K, Liu X. Long non-coding RNA MALAT1 regulates ZEB1 expression by sponging miR-143-3p and promotes hepatocellular carcinoma progression. J Cell Biochem 2017; 118 (12) 4836-4843
  • 119 Lu Z, Xiao Z, Liu F. , et al. Long non-coding RNA HULC promotes tumor angiogenesis in liver cancer by up-regulating sphingosine kinase 1 (SPHK1). Oncotarget 2016; 7 (01) 241-254
  • 120 Tran DDH, Kessler C, Niehus SE, Mahnkopf M, Koch A, Tamura T. Myc target gene, long intergenic noncoding RNA, Linc00176 in hepatocellular carcinoma regulates cell cycle and cell survival by titrating tumor suppressor microRNAs. Oncogene 2018; 37 (01) 75-85
  • 121 Zhang H, Zhou D, Ying M. , et al. Expression of long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) exacerbates hepatocellular carcinoma through suppressing miR-195. Med Sci Monit 2016; 22: 4820-4829
  • 122 Fu WM, Zhu X, Wang WM. , et al. Hotair mediates hepatocarcinogenesis through suppressing miRNA-218 expression and activating P14 and P16 signaling. J Hepatol 2015; 63 (04) 886-895
  • 123 Su DN, Wu SP, Chen HT, He JH. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol Lett 2016; 12 (05) 4061-4067
  • 124 Cao C, Zhang T, Zhang D. , et al. The long non-coding RNA, SNHG6-003, functions as a competing endogenous RNA to promote the progression of hepatocellular carcinoma. Oncogene 2017; 36 (08) 1112-1122
  • 125 Yuan JH, Yang F, Wang F. , et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014; 25 (05) 666-681
  • 126 Wang F, Ying HQ, He BS. , et al. Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget 2015; 6 (10) 7899-7917
  • 127 Chen Z, Yu C, Zhan L, Pan Y, Chen L, Sun C. LncRNA CRNDE promotes hepatic carcinoma cell proliferation, migration and invasion by suppressing miR-384. Am J Cancer Res 2016; 6 (10) 2299-2309
  • 128 Lu YB, Jiang Q, Yang MY, Zhou JX, Zhang Q. Long noncoding RNA NNT-AS1 promotes hepatocellular carcinoma progression and metastasis through miR-363/CDK6 axis. Oncotarget 2017; 8 (51) 88804-88814
  • 129 Shi Y, Song Q, Yu S, Hu D, Zhuang X. Microvascular invasion in hepatocellular carcinoma overexpression promotes cell proliferation and inhibits cell apoptosis of hepatocellular carcinoma via inhibiting miR-199a expression. OncoTargets Ther 2015; 8: 2303-2310
  • 130 Huang X, Gao Y, Qin J, Lu S. lncRNA MIAT promotes proliferation and invasion of HCC cells via sponging miR-214. Am J Physiol Gastrointest Liver Physiol 2018; 314 (05) G559-G565
  • 131 Gou X, Zhao X, Wang Z. Long noncoding RNA PVT1 promotes hepatocellular carcinoma progression through regulating miR-214. Cancer Biomark 2017; 20 (04) 511-519
  • 132 Chen F, Bai G, Li Y, Feng Y, Wang L. A positive feedback loop of long noncoding RNA CCAT2 and FOXM1 promotes hepatocellular carcinoma growth. Am J Cancer Res 2017; 7 (07) 1423-1434
  • 133 Li B, Mao R, Liu C, Zhang W, Tang Y, Guo Z. LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci 2018; 197: 122-129
  • 134 Xiong D, Sheng Y, Ding S. , et al. LINC00052 regulates the expression of NTRK3 by miR-128 and miR-485-3p to strengthen HCC cells invasion and migration. Oncotarget 2016; 7 (30) 47593-47608
  • 135 Zhu L, Yang N, Chen J. , et al. LINC00052 upregulates EPB41L3 to inhibit migration and invasion of hepatocellular carcinoma by binding miR-452-5p. Oncotarget 2017; 8 (38) 63724-63737
  • 136 He JH, Han ZP, Liu JM. , et al. Overexpression of long non-coding RNA MEG3 inhibits proliferation of hepatocellular carcinoma Huh7 cells via negative modulation of miRNA-664. J Cell Biochem 2017; 118 (11) 3713-3721
  • 137 Wu J, Huang J, Wang W. , et al. Long non-coding RNA Fer-1-like protein 4 acts as a tumor suppressor via miR-106a-5p and predicts good prognosis in hepatocellular carcinoma. Cancer Biomark 2017; 20 (01) 55-65
  • 138 Ding G, Peng Z, Shang J, Kang Y, Ning H, Mao C. LincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through miR-9/E-cadherin cascade signaling pathway molecular mechanism. OncoTargets Ther 2017; 10: 3241-3247
  • 139 Zeng T, Wang D, Chen J. , et al. LncRNA-AF113014 promotes the expression of Egr2 by interaction with miR-20a to inhibit proliferation of hepatocellular carcinoma cells. PLoS One 2017; 12 (05) e0177843
  • 140 Kong Q, Zhang S, Liang C. , et al. LncRNA XIST functions as a molecular sponge of miR-194-5p to regulate MAPK1 expression in hepatocellular carcinoma cell. J Cell Biochem 2018; 119 (06) 4458-4468
  • 141 Zhuang LK, Yang YT, Ma X. , et al. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST. Cell Death Dis 2016; 7: e2203
  • 142 Yuan F, Zhou W, Zou C. , et al. Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways. Mol Cell Biochem 2010; 343 (1–2): 155-162
  • 143 Lui KY, Zhao H, Qiu C. , et al. Integrator complex subunit 6 (INTS6) inhibits hepatocellular carcinoma growth by Wnt pathway and serve as a prognostic marker. BMC Cancer 2017; 17 (01) 644
  • 144 Kandasamy K, Mohan SS, Raju R. , et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol 2010; 11 (01) R3
  • 145 Li J, Wu PW, Zhou Y. , et al. Rage induces hepatocellular carcinoma proliferation and sorafenib resistance by modulating autophagy. Cell Death Dis 2018; 9 (02) 225