Semin Reprod Med 2018; 36(05): 253-264
DOI: 10.1055/s-0038-1677463
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Perspectives in Gamete and Embryo Cryopreservation

Laura Francesca Rienzi
1   GENERA Centre for Reproductive Medicine, Rome, Italy
2   GENERA Centre for Reproductive Medicine, Marostica (VI), Italy
,
Benedetta Iussig
2   GENERA Centre for Reproductive Medicine, Marostica (VI), Italy
,
Lisa Dovere
1   GENERA Centre for Reproductive Medicine, Rome, Italy
,
Gemma Fabozzi
1   GENERA Centre for Reproductive Medicine, Rome, Italy
,
Danilo Cimadomo
1   GENERA Centre for Reproductive Medicine, Rome, Italy
,
Filippo Maria Ubaldi
1   GENERA Centre for Reproductive Medicine, Rome, Italy
2   GENERA Centre for Reproductive Medicine, Marostica (VI), Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
04 April 2019 (online)

Abstract

Cryopreserved gametes and embryos are a major feature of human-assisted reproduction and patient care services, accounting for an increasing number of births worldwide. Since the first success obtained using frozen human spermatozoa, cryopreservation technology has been successfully extended to include oocytes and embryos, in a variety of both medical and nonmedical indications. Over the years, the available procedures have become widely implemented and the increasing evidence of its efficacy has contributed to acceptance of the technology. Nevertheless, a gold standard protocol that would be universally shared by clinics has yet to be definitively established and, therefore, research into cryopreservation of gametes and embryos cannot be considered concluded. Moreover, much effort should be committed to the definition and resolution of safety issues, the establishment of automation, and investigations about the potentiality of immature germ cells or stem cells.

 
  • References

  • 1 Sherman JK. Synopsis of the use of frozen human semen since 1964: state of the art of human semen banking. Fertil Steril 1973; 24 (05) 397-412
  • 2 Macaldowie A, Wanh YA, Chambers GM, Sullivan EA. Assisted Reproductive Technology in Australia and New Zealand 2010. Sydney, NSW: Australian Institute of Health and Welfare; 2012
  • 3 Kupka MS, D'Hooghe T, Ferraretti AP. , et al; European IVF-Monitoring Consortium (EIM); European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology in Europe, 2011: results generated from European registers by ESHRE. Hum Reprod 2016; 31 (02) 233-248
  • 4 Practice Committees of American Society for Reproductive Medicine; Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: a guideline. Fertil Steril 2013; 99 (01) 37-43
  • 5 Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 1963; 47: 347-369
  • 6 Kleinhans FW, Mazur P. Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest. Cryobiology 2007; 54 (02) 212-222
  • 7 Sherman JK. Cryopreservation of human semen. In: Keel BA, Webster BW. , eds. CRC Handbook of the Laboratory Diagnosis and Treatment of Infertility. Boston, MA: CRC Press; 1990: 229-260
  • 8 Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949; 164 (4172): 666-670
  • 9 Mortimer D. Current and future concepts and practices in human sperm cryobanking. Reprod Biomed Online 2004; 9 (02) 134-151
  • 10 Di Santo M, Tarozzi N, Nadalini M, Borini A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012; 2012: 854837
  • 11 Sieme H, Oldenhof H, Wolkers WF. Mode of action of cryoprotectants for sperm preservation. Anim Reprod Sci 2016; 169: 2-5
  • 12 Jeyendran RS, Gunawardana VK, Barisic D, Wentz AC. TEST-yolk media and sperm quality. Hum Reprod Update 1995; 1 (01) 73-79
  • 13 Varisli O, Scott H, Agca C, Agca Y. The effects of cooling rates and type of freezing extenders on cryosurvival of rat sperm. Cryobiology 2013; 67 (02) 109-116
  • 14 Röpke T, Oldenhof H, Leiding C, Sieme H, Bollwein H, Wolkers WF. Liposomes for cryopreservation of bovine sperm. Theriogenology 2011; 76 (08) 1465-1472
  • 15 Pillet E, Labbe C, Batellier F. , et al. Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology 2012; 77 (02) 268-279
  • 16 Blommaert D, Franck T, Donnay I, Lejeune JP, Detilleux J, Serteyn D. Substitution of egg yolk by a cyclodextrin-cholesterol complex allows a reduction of the glycerol concentration into the freezing medium of equine sperm. Cryobiology 2016; 72 (01) 27-32
  • 17 Moraes EA, Matos WC, Graham JK, Ferrari Jr WD. Cholestanol-loaded-cyclodextrin improves the quality of stallion spermatozoa after cryopreservation. Anim Reprod Sci 2015; 158: 19-24
  • 18 Behrman SJ, Sawada Y. Heterologous and homologous inseminations with human semen frozen and stored in a liquid-nitrogen refrigerator. Fertil Steril 1966; 17 (04) 457-466
  • 19 Thachil JV, Jewett MA. Preservation techniques for human semen. Fertil Steril 1981; 35 (05) 546-548
  • 20 Wong AWY, Ho PC, Kwan M, Ma HK. Factors affecting the success of artificial insemination by frozen donor semen. Int J Fertil 1989; 34 (01) 25-29
  • 21 Centola GM, Raubertas RF, Mattox JH. Cryopreservation of human semen. Comparison of cryopreservatives, sources of variability, and prediction of post-thaw survival. J Androl 1992; 13 (03) 283-288
  • 22 Critser JK, Huse-Benda AR, Aaker DV, Arneson BW, Ball GD. Cryopreservation of human spermatozoa. III. The effect of cryoprotectants on motility. Fertil Steril 1988; 50 (02) 314-320
  • 23 Verheyen G, Pletincx I, Van Steirteghem A. Effect of freezing method, thawing temperature and post-thaw dilution/washing on motility (CASA) and morphology characteristics of high-quality human sperm. Hum Reprod 1993; 8 (10) 1678-1684
  • 24 Holt WV. Basic aspects of frozen storage of semen. Anim Reprod Sci 2000; 62 (1-3): 3-22
  • 25 Giraud MN, Motta C, Boucher D, Grizard G. Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Hum Reprod 2000; 15 (10) 2160-2164
  • 26 Isachenko E, Isachenko V, Katkov II, Dessole S, Nawroth F. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod Biomed Online 2003; 6 (02) 191-200
  • 27 Fahy GM. The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology 1986; 23 (01) 1-13
  • 28 Pegg DE, Diaper MP. On the mechanism of injury to slowly frozen erythrocytes. Biophys J 1988; 54 (03) 471-488
  • 29 Shaw JM, Oranratnachai A, Trounson AO. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 2000; 53 (01) 59-72
  • 30 Nawroth F, Isachenko V, Dessole S. , et al. Vitrification of human spermatozoa without cryoprotectants. Cryo Lett 2002; 23 (02) 93-102
  • 31 Isachenko V, Maettner R, Petrunkina AM. , et al. Cryoprotectant-free vitrification of human spermatozoa in large (up to 0.5 mL) volume: a novel technology. Clin Lab 2011; 57 (9–10): 643-650
  • 32 Isachenko V, Rahimi G, Mallmann P, Sanchez R, Isachenko E. Technologies of cryoprotectant-free vitrification of human spermatozoa: asepticity as criterion of effectiveness. Andrology 2017; 5 (06) 1055-1063
  • 33 Henkel RR, Schill WB. Sperm preparation for ART. Reprod Biol Endocrinol 2003; 1: 108
  • 34 Grizard G, Chevalier V, Griveau JF, Le Lannou D, Boucher D. Influence of seminal plasma on cryopreservation of human spermatozoa in a biological material-free medium: study of normal and low-quality semen. Int J Androl 1999; 22 (03) 190-196
  • 35 Opuwari CS, Henkel RR. An update on oxidative damage to spermatozoa and oocytes. BioMed Res Int 2016; 2016: 9540142
  • 36 Esteves SC, Sharma RK, Thomas Jr AJ, Agarwal A. Improvement in motion characteristics and acrosome status in cryopreserved human spermatozoa by swim-up processing before freezing. Hum Reprod 2000; 15 (10) 2173-2179
  • 37 Branco CS, Garcez ME, Pasqualotto FF, Erdtman B, Salvador M. Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen. Cryobiology 2010; 60 (02) 235-237
  • 38 Kalthur G, Raj S, Thiyagarajan A, Kumar S, Kumar P, Adiga SK. Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw-induced DNA damage. Fertil Steril 2011; 95 (03) 1149-1151
  • 39 Cabrita E, Ma S, Diogo P, Martínez-Páramo S, Sarasquete C, Dinis MT. The influence of certain amino acids and vitamins on post-thaw fish sperm motility, viability and DNA fragmentation. Anim Reprod Sci 2011; 125 (1-4): 189-195
  • 40 Succu S, Berlinguer F, Pasciu V, Satta V, Leoni GG, Naitana S. Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. J Pineal Res 2011; 50 (03) 310-318
  • 41 Meamar M, Zribi N, Cambi M. , et al. Sperm DNA fragmentation induced by cryopreservation: new insights and effect of a natural extract from Opuntia ficus-indica. Fertil Steril 2012; 98 (02) 326-333
  • 42 Gholami D, Ghaffari SM, Shahverdi A. , et al. Proteomic analysis and microtubule dynamicity of human sperm in electromagnetic cryopreservation. J Cell Biochem 2018; 119 (11) 9483-9497
  • 43 AbdelHafez F, Bedaiwy M, El-Nashar SA, Sabanegh E, Desai N. Techniques for cryopreservation of individual or small numbers of human spermatozoa: a systematic review. Hum Reprod Update 2009; 15 (02) 153-164
  • 44 Edgar DH, Gook DA. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update 2012; 18 (05) 536-554
  • 45 Rienzi L, Gracia C, Maggiulli R. , et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update 2017; 23 (02) 139-155
  • 46 Vajta G, Nagy ZP. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online 2006; 12 (06) 779-796
  • 47 Kuleshova LL, Shaw JM, Trounson AO. Studies on replacing most of the penetrating cryoprotectant by polymers for embryo cryopreservation. Cryobiology 2001; 43 (01) 21-31
  • 48 Eto TK, Rubinsky B. Antifreeze glycoproteins increase solution viscosity. Biochem Biophys Res Commun 1993; 197 (02) 927-931
  • 49 Wowk B, Leitl E, Rasch CM, Mesbah-Karimi N, Harris SB, Fahy GM. Vitrification enhancement by synthetic ice blocking agents. Cryobiology 2000; 40 (03) 228-236
  • 50 Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 2005; a; 11 (03) 300-308
  • 51 Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 2007; 67 (01) 73-80
  • 52 Seki S, Mazur P. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 2009; 59 (01) 75-82
  • 53 Mazur P, Seki S. Survival of mouse oocytes after being cooled in a vitrification solution to -196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: a new paradigm for cryopreservation by vitrification. Cryobiology 2011; 62 (01) 1-7
  • 54 Leibo SP, Pool TB. The principal variables of cryopreservation: solutions, temperatures, and rate changes. Fertil Steril 2011; 96 (02) 269-276
  • 55 Vajta G, Rienzi L, Ubaldi FM. Open versus closed systems for vitrification of human oocytes and embryos. Reprod Biomed Online 2015; 30 (04) 325-333
  • 56 Parmegiani L, Cognigni GE, Filicori M. Ultra-violet sterilization of liquid nitrogen prior to vitrification. Hum Reprod 2009; 24 (11) 2969
  • 57 Cobo A, Romero JL, Pérez S, de los Santos MJ, Meseguer M, Remohí J. Storage of human oocytes in the vapor phase of nitrogen. Fertil Steril 2010; 94 (05) 1903-1907
  • 58 Arav A, Natan Y, Levi-Setti PE, Menduni F, Patrizio P. New methods for cooling and storing oocytes and embryos in a clean environment of -196°C. Reprod Biomed Online 2016; 33 (01) 71-78
  • 59 Isachenko V, Todorov P, Seisenbayeva A. , et al. Vitrification of human pronuclear oocytes by direct plunging into cooling agent: non sterile liquid nitrogen vs. sterile liquid air. Cryobiology 2018; 80: 84-88
  • 60 Abdel-Hamid IA, Ali OI. Delayed ejaculation: pathophysiology, diagnosis, and treatment. World J Mens Health 2018; 36 (01) 22-40
  • 61 Wu B, Wong D, Lu S, Dickstein S, Silva M, Gelety TJ. Optimal use of fresh and frozen-thawed testicular sperm for intracytoplasmic sperm injection in azoospermic patients. J Assist Reprod Genet 2005; 22 (11-12): 389-394
  • 62 Sanger WG, Olson JH, Sherman JK. Semen cryobanking for men with cancer--criteria change. Fertil Steril 1992; 58 (05) 1024-1027
  • 63 Ferrari S, Paffoni A, Filippi F, Busnelli A, Vegetti W, Somigliana E. Sperm cryopreservation and reproductive outcome in male cancer patients: a systematic review. Reprod Biomed Online 2016; 33 (01) 29-38
  • 64 Martinez F. ; on behalf of the International Society for Fertility Preservation-ESHRE-ASRM Expert Working Group. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Hum Reprod 2017; 32 (09) 1802-1811
  • 65 Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum Reprod Update 2015; 21 (02) 209-227
  • 66 Donnelly ET, Steele EK, McClure N, Lewis SE. Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod 2001; 16 (06) 1191-1199
  • 67 Yogev L, Kleiman SE, Shabtai E. , et al. Long-term cryostorage of sperm in a human sperm bank does not damage progressive motility concentration. Hum Reprod 2010; 25 (05) 1097-1103
  • 68 Ragni G, Caccamo AM, Dalla Serra A, Guercilena S. Computerized slow-staged freezing of semen from men with testicular tumors or Hodgkin's disease preserves sperm better than standard vapor freezing. Fertil Steril 1990; 53 (06) 1072-1075
  • 69 Kuczyński W, Dhont M, Grygoruk C, Grochowski D, Wołczyński S, Szamatowicz M. The outcome of intracytoplasmic injection of fresh and cryopreserved ejaculated spermatozoa--a prospective randomized study. Hum Reprod 2001; 16 (10) 2109-2113
  • 70 Borges Jr E, Rossi LM, Locambo de Freitas CV. , et al. Fertilization and pregnancy outcome after intracytoplasmic injection with fresh or cryopreserved ejaculated spermatozoa. Fertil Steril 2007; 87 (02) 316-320
  • 71 Van Steirteghem A, Nagy P, Joris H. , et al. Results of intracytoplasmic sperm injection with ejaculated, fresh and frozen-thawed epididymal and testicular spermatozoa. Hum Reprod 1998; 13 (Suppl. 01) 134-142
  • 72 Habermann H, Seo R, Cieslak J, Niederberger C, Prins GS, Ross L. In vitro fertilization outcomes after intracytoplasmic sperm injection with fresh or frozen-thawed testicular spermatozoa. Fertil Steril 2000; 73 (05) 955-960
  • 73 Kyono K, Fukunaga N, Haigo K, Chiba S, Araki Y. Pregnancy achieved following ICSI from a man with Klinefelter's syndrome and spinal cord injury. Hum Reprod 2001; 16 (11) 2347-2349
  • 74 Ben Rhouma K, Marrakchi H, Khouja H, Attalah K, Ben Miled E, Sakly M. Outcome of intracytoplasmic injection of fresh and frozen-thawed testicular spermatozoa. A comparative study. J Reprod Med 2003; 48 (05) 349-354
  • 75 Karacan M, Alwaeely F, Erkan S. , et al. Outcome of intracytoplasmic sperm injection cycles with fresh testicular spermatozoa obtained on the day of or the day before oocyte collection and with cryopreserved testicular sperm in patients with azoospermia. Fertil Steril 2013; 100 (04) 975-980
  • 76 Argyle CE, Harper JC, Davies MC. Oocyte cryopreservation: where are we now?. Hum Reprod Update 2016; 22 (04) 440-449
  • 77 Chen C. Pregnancy after human oocyte cryopreservation. Lancet 1986; 1 (8486): 884-886
  • 78 Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 1999; 14 (12) 3077-3079
  • 79 Cobo A, Kuwayama M, Pérez S, Ruiz A, Pellicer A, Remohí J. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril 2008; 89 (06) 1657-1664
  • 80 Cobo A, Meseguer M, Remohí J, Pellicer A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod 2010; 25 (09) 2239-2246
  • 81 Rienzi L, Romano S, Albricci L. , et al. Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod 2010; 25 (01) 66-73
  • 82 Parmegiani L, Cognigni GE, Bernardi S. , et al. Efficiency of aseptic open vitrification and hermetical cryostorage of human oocytes. Reprod Biomed Online 2011; 23 (04) 505-512
  • 83 Almodin CG, Minguetti-Camara VC, Paixao CL, Pereira PC. Embryo development and gestation using fresh and vitrified oocytes. Hum Reprod 2010; 25 (05) 1192-1198
  • 84 García JI, Noriega-Portella L, Noriega-Hoces L. Efficacy of oocyte vitrification combined with blastocyst stage transfer in an egg donation program. Hum Reprod 2011; 26 (04) 782-790
  • 85 Trokoudes KM, Pavlides C, Zhang X. Comparison outcome of fresh and vitrified donor oocytes in an egg-sharing donation program. Fertil Steril 2011; 95 (06) 1996-2000
  • 86 Solé M, Santaló J, Boada M. , et al. How does vitrification affect oocyte viability in oocyte donation cycles? A prospective study to compare outcomes achieved with fresh versus vitrified sibling oocytes. Hum Reprod 2013; 28 (08) 2087-2092
  • 87 Cobo A, Garrido N, Pellicer A, Remohí J. Six years' experience in ovum donation using vitrified oocytes: report of cumulative outcomes, impact of storage time, and development of a predictive model for oocyte survival rate. Fertil Steril 2015; 104 (06) 1426-34.e1 , 8
  • 88 Kim TJ, Laufer LR, Hong SW. Vitrification of oocytes produces high pregnancy rates when carried out in fertile women. Fertil Steril 2010; 93 (02) 467-474
  • 89 Ubaldi F, Anniballo R, Romano S. , et al. Cumulative ongoing pregnancy rate achieved with oocyte vitrification and cleavage stage transfer without embryo selection in a standard infertility program. Hum Reprod 2010; 25 (05) 1199-1205
  • 90 Rienzi L, Cobo A, Paffoni A. , et al. Consistent and predictable delivery rates after oocyte vitrification: an observational longitudinal cohort multicentric study. Hum Reprod 2012; 27 (06) 1606-1612
  • 91 Cil AP, Bang H, Oktay K. Age-specific probability of live birth with oocyte cryopreservation: an individual patient data meta-analysis. Fertil Steril 2013; 100 (02) 492-9.e3
  • 92 Cobo A, Garrido N, Crespo J, José R, Pellicer A. Accumulation of oocytes: a new strategy for managing low-responder patients. Reprod Biomed Online 2012; 24 (04) 424-432
  • 93 Kim SS, Klemp J, Fabian C. Breast cancer and fertility preservation. Fertil Steril 2011; 95 (05) 1535-1543
  • 94 Friedler S, Koc O, Gidoni Y, Raziel A, Ron-El R. Ovarian response to stimulation for fertility preservation in women with malignant disease: a systematic review and meta-analysis. Fertil Steril 2012; 97 (01) 125-133
  • 95 Kim MK, Lee DR, Han JE. , et al. Live birth with vitrified-warmed oocytes of a chronic myeloid leukemia patient nine years after allogenic bone marrow transplantation. J Assist Reprod Genet 2011; 28 (12) 1167-1170
  • 96 Garcia-Velasco JA, Domingo J, Cobo A, Martínez M, Carmona L, Pellicer A. Five years' experience using oocyte vitrification to preserve fertility for medical and nonmedical indications. Fertil Steril 2013; 99 (07) 1994-1999
  • 97 Alvarez M, Solé M, Devesa M. , et al. Live birth using vitrified--warmed oocytes in invasive ovarian cancer: case report and literature review. Reprod Biomed Online 2014; 28 (06) 663-668
  • 98 Martinez M, Rabadan S, Domingo J, Cobo A, Pellicer A, Garcia-Velasco JA. Obstetric outcome after oocyte vitrification and warming for fertility preservation in women with cancer. Reprod Biomed Online 2014; 29 (06) 722-728
  • 99 Doyle JO, Richter KS, Lim J, Stillman RJ, Graham JR, Tucker MJ. Successful elective and medically indicated oocyte vitrification and warming for autologous in vitro fertilization, with predicted birth probabilities for fertility preservation according to number of cryopreserved oocytes and age at retrieval. Fertil Steril 2016; 105 (02) 459-66.e2
  • 100 Petropanagos A, Cattapan A, Baylis F, Leader A. Social egg freezing: risk, benefits and other considerations. CMAJ 2015; 187 (09) 666-669
  • 101 Stoop D, Cobo A, Silber S. Fertility preservation for age-related fertility decline. Lancet 2014; 384 (9950): 1311-1319
  • 102 Cobo A, García-Velasco JA, Coello A, Domingo J, Pellicer A, Remohí J. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil Steril 2016; 105 (03) 755-764.e8
  • 103 Mukaida T, Wada S, Takahashi K, Pedro PB, An TZ, Kasai M. Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod 1998; 13 (1O): 2874-2879
  • 104 Cobo A, de los Santos MJ, Castellò D, Gámiz P, Campos P, Remohí J. Outcomes of vitrified early cleavage-stage and blastocyst-stage embryos in a cryopreservation program: evaluation of 3,150 warming cycles. Fertil Steril 2012; 98 (05) 1138-46.e1
  • 105 Cobo A, Castellò D, Vallejo B, Albert C, de los Santos JM, Remohí J. Outcome of cryotransfer of embryos developed from vitrified oocytes: double vitrification has no impact on delivery rates. Fertil Steril 2013; 99 (06) 1623-1630
  • 106 Gardner DK, Meseguer M, Rubio C, Treff NR. Diagnosis of human preimplantation embryo viability. Hum Reprod Update 2015; 21 (06) 727-747
  • 107 Escribá MJ, Zulategui JF, Galán A, Mercader A, Remohí J, de los Santos MJ. Vitrification of preimplantation genetically diagnosed human blastocysts and its contribution to the cumulative ongoing pregnancy rate per cycle by using a closed device. Fertil Steril 2008; 89 (04) 840-846
  • 108 Zhang X, Trokoudes KM, Pavlides C. Vitrification of biopsied embryos at cleavage, morula and blastocyst stage. Reprod Biomed Online 2009; 19 (04) 526-531
  • 109 Kahraman S, Candan ZN. Outcomes of vitrified-warmed day-4 embryos after day-3 cleavage-stage biopsy. Reprod Biomed Online 2010; 21 (05) 636-641
  • 110 Schoolcraft WB, Treff NR, Stevens JM, Ferry K, Katz-Jaffe M, Scott Jr RT. Live birth outcome with trophectoderm biopsy, blastocyst vitrification, and single-nucleotide polymorphism microarray-based comprehensive chromosome screening in infertile patients. Fertil Steril 2011; 96 (03) 638-640
  • 111 Chang LJ, Huang CC, Tsai YY. , et al. Blastocyst biopsy and vitrification are effective for preimplantation genetic diagnosis of monogenic diseases. Hum Reprod 2013; 28 (05) 1435-1444
  • 112 Wong KM, van Wely M, Mol F, Repping S, Mastenbroek S. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst Rev 2017; 3: CD011184
  • 113 Roque M, Nuto Nóbrega B, Valle M. , et al. Freeze-all strategy in IVF/ICSI cycles: an update on clinical utility. Panminerva Med 2018; 61 (01) 52-57
  • 114 Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril 2011; 96 (02) 344-348
  • 115 Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, Hudson C. Matched-cohort comparison of single-embryo transfers in fresh and frozen-thawed embryo transfer cycles. Fertil Steril 2013; 99 (02) 389-392
  • 116 Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all at the blastocyst or bipronuclear stage: a randomized clinical trial. Fertil Steril 2015; 104 (05) 1138-1144
  • 117 Roque M, Lattes K, Serra S. , et al. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis. Fertil Steril 2013; 99 (01) 156-162
  • 118 Maheshwari A, Kalampokas T, Davidson J, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of blastocyst-stage versus cleavage-stage embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril 2013; 100 (06) 1615-21.e1 , 10
  • 119 Bedoschi G, Oktay K. Current approach to fertility preservation by embryo cryopreservation. Fertil Steril 2013; 99 (06) 1496-1502
  • 120 Rienzi L, Ubaldi FM. Oocyte versus embryo cryopreservation for fertility preservation in cancer patients: guaranteeing a women's autonomy. J Assist Reprod Genet 2015; 32 (08) 1195-1196
  • 121 Thepot F, Mayaux MJ, Czyglick F, Wack T, Selva J, Jalbert P. Incidence of birth defects after artificial insemination with frozen donor spermatozoa: a collaborative study of the French CECOS Federation on 11,535 pregnancies. Hum Reprod 1996; 11 (10) 2319-2323
  • 122 Lansac J, Thepot F, Mayaux MJ. , et al. Pregnancy outcome after artificial insemination or IVF with frozen semen donor: a collaborative study of the French CECOS Federation on 21,597 pregnancies. Eur J Obstet Gynecol Reprod Biol 1997; 74 (02) 223-228
  • 123 Lansac J, Royere D. Follow-up studies of children born after frozen sperm donation. Hum Reprod Update 2001; 7 (01) 33-37
  • 124 Fernández-Gonzalez R, Moreira PN, Pérez-Crespo M. , et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod 2008; 78 (04) 761-772
  • 125 Chian RC, Huang JY, Tan SL. , et al. Obstetric and perinatal outcome in 200 infants conceived from vitrified oocytes. Reprod Biomed Online 2008; 16 (05) 608-610
  • 126 Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online 2009; 18 (06) 769-776
  • 127 Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril 2009; 91 (02) 305-315
  • 128 Wennerholm UB, Söderström-Anttila V, Bergh C. , et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod 2009; 24 (09) 2158-2172
  • 129 Forman EJ, Li X, Ferry KM, Scott K, Treff NR, Scott Jr RT. Oocyte vitrification does not increase the risk of embryonic aneuploidy or diminish the implantation potential of blastocysts created after intracytoplasmic sperm injection: a novel, paired randomized controlled trial using DNA fingerprinting. Fertil Steril 2012; 98 (03) 644-649
  • 130 Li Z, Wang YA, Ledger W, Edgar DH, Sullivan EA. Clinical outcomes following cryopreservation of blastocysts by vitrification or slow freezing: a population-based cohort study. Hum Reprod 2014; 29 (12) 2794-2801
  • 131 Cobo A, Serra V, Garrido N, Olmo I, Pellicer A, Remohí J. Obstetric and perinatal outcome of babies born from vitrified oocytes. Fertil Steril 2014; 102 (04) 1006-1015.e4
  • 132 Levi-Setti PE, Borini A, Patrizio P. , et al. ART results with frozen oocytes: data from the Italian ART registry (2005-2013). J Assist Reprod Genet 2016; 33 (01) 123-128
  • 133 Sekhon L, Lee JA, Flisser E, Copperman AB, Stein D. Blastocyst vitrification, cryostorage and warming does not affect live birth rate, infant birth weight or timing of delivery. Reprod Biomed Online 2018; 37 (01) 33-42
  • 134 Alviggi C, Conforti A, Carbone IF, Borrelli R, de Placido G, Guerriero S. Influence of cryopreservation on perinatal outcome after blastocyst- vs cleavage-stage embryo transfer: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2018; 51 (01) 54-63
  • 135 Maheshwari A, Pandey S, Amalraj Raja E, Shetty A, Hamilton M, Bhattacharya S. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer?. Hum Reprod Update 2018; 24 (01) 35-58
  • 136 Bartolac LK, Lowe JL, Koustas G, Grupen CG, Sjöblom C. Vitrification, not cryoprotectant exposure, alters the expression of developmentally important genes in in vitro produced porcine blastocysts. Cryobiology 2018; 80: 70-76
  • 137 Parmegiani L, Beilby KH, Arnone A. , et al. Testing the efficacy and efficiency of a single “universal warming protocol” for vitrified human embryos: prospective randomized controlled trial and retrospective longitudinal cohort study. J Assist Reprod Genet 2018; 35 (10) 1887-1895
  • 138 Serdarogullari M, Coban O, Boynukalin FK, Bilgin EM, Findikli N, Bahceci M. Successful application of a single warming protocol for embryos cryopreserved by either slow freezing or vitrification techniques. Syst Biol Reprod Med 2018; 65 (01) 12-19
  • 139 Smith GD, Takayama S. Application of microfluidic technologies to human assisted reproduction. Mol Hum Reprod 2017; 23 (04) 257-268
  • 140 Lai D, Ding J, Smith GW, Smith GD, Takayama S. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum Reprod 2015; 30 (01) 37-45
  • 141 Pyne DG, Liu J, Abdelgawad M, Sun Y. Digital microfluidic processing of mammalian embryos for vitrification. PLoS One 2014; 9 (09) e108128
  • 142 Liu J, Shi C, Wen J. , et al. Automated vitrification of embryos: a robotics approach. IEEE Robot Autom Mag 2015; 22: 33-40
  • 143 Roy TK, Brandi S, Peura TT. Chapter 20: Gavi-Automated vitrification instrument. Methods Mol Biol 2017; 1568: 261-277
  • 144 Gianaroli L, Magli MC, Stanghellini I. , et al. DNA integrity is maintained after freeze-drying of human spermatozoa. Fertil Steril 2012; 97 (05) 1067-1073.e1
  • 145 Gil L, Olaciregui M, Luño V, Malo C, González N, Martínez F. Current status of freeze-drying technology to preserve domestic animals sperm. Reprod Domest Anim 2014; 49 (Suppl. 04) 72-81
  • 146 Olaciregui M, Gil L. Freeze-dried spermatozoa: a future tool?. Reprod Domest Anim 2017; 52 (Suppl. 02) 248-254