Semin Liver Dis 2018; 38(04): 320-332
DOI: 10.1055/s-0038-1670677
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Unfolded Protein Response Sensors in Hepatic Lipid Metabolism and Nonalcoholic Fatty Liver Disease

Anne S. Henkel
1   Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
› Author Affiliations
Further Information

Publication History

Publication Date:
24 October 2018 (online)

Abstract

Activation of the hepatic unfolded protein response (UPR), a highly conserved cellular response to endoplasmic reticulum (ER) stress, is a firmly established feature of nonalcoholic fatty liver disease (NAFLD). ER stress is now widely accepted as both a cause and a consequence of hepatic steatosis. Moreover, the accumulation of hepatic lipids induces ER stress, which, in turn, disrupts hepatic lipid metabolism thus creating a vicious cycle that potentiates hepatic lipid accumulation. Additionally, there is interplay between the UPR and the inflammatory cascades associated with progressive nonalcoholic steatohepatitis. Understanding the molecular mechanisms by which the UPR regulates hepatic lipid metabolism and lipotoxic liver injury may lead to the identification of novel therapeutic targets for the treatment of NAFLD.

 
  • References

  • 1 Browning JD, Szczepaniak LS, Dobbins R. , et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40 (06) 1387-1395
  • 2 Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 2003; 37 (05) 1202-1219
  • 3 Fleischman MW, Budoff M, Zeb I, Li D, Foster T. NAFLD prevalence differs among hispanic subgroups: the Multi-Ethnic Study of Atherosclerosis. World J Gastroenterol 2014; 20 (17) 4987-4993
  • 4 Kopec KL, Burns D. Nonalcoholic fatty liver disease: a review of the spectrum of disease, diagnosis, and therapy. Nutr Clin Pract 2011; 26 (05) 565-576
  • 5 Younossi ZM, Stepanova M, Negro F. , et al. Nonalcoholic fatty liver disease in lean individuals in the United States. Medicine (Baltimore) 2012; 91 (06) 319-327
  • 6 Wong RJ, Aguilar M, Cheung R. , et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 148 (03) 547-555
  • 7 Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 2011; 141 (04) 1249-1253
  • 8 Puri P, Mirshahi F, Cheung O. , et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 2008; 134 (02) 568-576
  • 9 Henkel A, Green RM. The unfolded protein response in fatty liver disease. Semin Liver Dis 2013; 33 (04) 321-329
  • 10 Imrie D, Sadler KC. Stress management: How the unfolded protein response impacts fatty liver disease. J Hepatol 2012; 57 (05) 1147-1151
  • 11 Ozcan U, Cao Q, Yilmaz E. , et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306 (5695): 457-461
  • 12 Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 2006; 147 (02) 943-951
  • 13 Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 2006; 291 (02) E275-E281
  • 14 Rutkowski DT, Wu J, Back SH. , et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell 2008; 15 (06) 829-840
  • 15 Lee JS, Mendez R, Heng HH, Yang ZQ, Zhang K. Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet formation. Am J Transl Res 2012; 4 (01) 102-113
  • 16 Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D. Dephosphorylation of translation initiation factor 2 alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab 2008; 7 (06) 520-532
  • 17 Kammoun HL, Chabanon H, Hainault I. , et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 2009; 119 (05) 1201-1215
  • 18 Yamamoto K, Takahara K, Oyadomari S. , et al. Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol Biol Cell 2010; 21 (17) 2975-2986
  • 19 Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005; 115 (10) 2656-2664
  • 20 Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 2004; 279 (25) 25935-25938
  • 21 Wek RC, Cavener DR. Translational control and the unfolded protein response. Antioxid Redox Signal 2007; 9 (12) 2357-2371
  • 22 Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiol Rev 2006; 86 (04) 1133-1149
  • 23 Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334 (6059): 1081-1086
  • 24 Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397 (6716): 271-274
  • 25 Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 2004; 101 (31) 11269-11274
  • 26 Harding HP, Novoa I, Zhang Y. , et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000; 6 (05) 1099-1108
  • 27 Marciniak SJ, Yun CY, Oyadomari S. , et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 2004; 18 (24) 3066-3077
  • 28 Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 2002; 318 (05) 1351-1365
  • 29 Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002; 3 (01) 99-111
  • 30 Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 2008; 33 (01) 75-89
  • 31 Uemura A, Oku M, Mori K, Yoshida H. Unconventional splicing of XBP1 mRNA occurs in the cytoplasm during the mammalian unfolded protein response. J Cell Sci 2009; 122 (Pt 16): 2877-2886
  • 32 Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001; 107 (07) 881-891
  • 33 Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 2006; 313 (5783): 104-107
  • 34 Han D, Lerner AG, Vande Walle L. , et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 2009; 138 (03) 562-575
  • 35 Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci 2014; 39 (05) 245-254
  • 36 Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012; 13 (02) 89-102
  • 37 Upton JP, Wang L, Han D. , et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 2012; 338 (6108): 818-822
  • 38 Lerner AG, Upton JP, Praveen PV. , et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 2012; 16 (02) 250-264
  • 39 Urano F, Wang X, Bertolotti A. , et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287 (5453): 664-666
  • 40 Lake AD, Novak P, Hardwick RN. , et al. The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease. Toxicol Sci 2014; 137 (01) 26-35
  • 41 Gregor MF, Yang L, Fabbrini E. , et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 2009; 58 (03) 693-700
  • 42 Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008; 320 (5882): 1492-1496
  • 43 Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 2008; 118 (01) 316-332
  • 44 Nakatani Y, Kaneto H, Kawamori D. , et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 2005; 280 (01) 847-851
  • 45 Boden G, Duan X, Homko C. , et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 2008; 57 (09) 2438-2444
  • 46 Sharma NK, Das SK, Mondal AK. , et al. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab 2008; 93 (11) 4532-4541
  • 47 Yang L, Jhaveri R, Huang J, Qi Y, Diehl AM. Endoplasmic reticulum stress, hepatocyte CD1d and NKT cell abnormalities in murine fatty livers. Lab Invest 2007; 87 (09) 927-937
  • 48 Boden G, Song W, Duan X. , et al. Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver. Obesity (Silver Spring) 2011; 19 (07) 1366-1373
  • 49 Cao J, Dai DL, Yao L. , et al. Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 2012; 364 (1-2): 115-129
  • 50 Feng B, Yao PM, Li Y. , et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 2003; 5 (09) 781-792
  • 51 Pineau L, Colas J, Dupont S. , et al. Lipid-induced ER stress: synergistic effects of sterols and saturated fatty acids. Traffic 2009; 10 (06) 673-690
  • 52 Listenberger LL, Han X, Lewis SE. , et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 2003; 100 (06) 3077-3082
  • 53 Peng G, Li L, Liu Y. , et al. Oleate blocks palmitate-induced abnormal lipid distribution, endoplasmic reticulum expansion and stress, and insulin resistance in skeletal muscle. Endocrinology 2011; 152 (06) 2206-2218
  • 54 Fu S, Watkins SM, Hotamisligil GS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab 2012; 15 (05) 623-634
  • 55 Ariyama H, Kono N, Matsuda S, Inoue T, Arai H. Decrease in membrane phospholipid unsaturation induces unfolded protein response. J Biol Chem 2010; 285 (29) 22027-22035
  • 56 Leamy AK, Egnatchik RA, Shiota M. , et al. Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells. J Lipid Res 2014; 55 (07) 1478-1488
  • 57 Liu X, Burhans MS, Flowers MT, Ntambi JM. Hepatic oleate regulates liver stress response partially through PGC-1α during high-carbohydrate feeding. J Hepatol 2016; 65 (01) 103-112
  • 58 Fu S, Yang L, Li P. , et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 2011; 473 (7348): 528-531
  • 59 Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 2006; 47 (12) 2726-2737
  • 60 Rong X, Albert CJ, Hong C. , et al. LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab 2013; 18 (05) 685-697
  • 61 Lodish HF, Kong N. Perturbation of cellular calcium blocks exit of secretory proteins from the rough endoplasmic reticulum. J Biol Chem 1990; 265 (19) 10893-10899
  • 62 Lodish HF, Kong N, Wikström L. Calcium is required for folding of newly made subunits of the asialoglycoprotein receptor within the endoplasmic reticulum. J Biol Chem 1992; 267 (18) 12753-12760
  • 63 Ersoy BA, Maner-Smith KM, Li Y, Alpertunga I, Cohen DE. Thioesterase-mediated control of cellular calcium homeostasis enables hepatic ER stress. J Clin Invest 2018; 128 (01) 141-156
  • 64 Promlek T, Ishiwata-Kimata Y, Shido M, Sakuramoto M, Kohno K, Kimata Y. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol Biol Cell 2011; 22 (18) 3520-3532
  • 65 Volmer R, van der Ploeg K, Ron D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci U S A 2013; 110 (12) 4628-4633
  • 66 Seo J, Fortuno III ES, Suh JM. , et al. Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes 2009; 58 (11) 2565-2573
  • 67 Wang S, Chen Z, Lam V. , et al. IRE1α-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. Cell Metab 2012; 16 (04) 473-486
  • 68 Atkins C, Liu Q, Minthorn E. , et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 2013; 73 (06) 1993-2002
  • 69 So JS, Hur KY, Tarrio M. , et al. Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice. Cell Metab 2012; 16 (04) 487-499
  • 70 Werstuck GH, Lentz SR, Dayal S. , et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 2001; 107 (10) 1263-1273
  • 71 Lee JN, Ye J. Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1. J Biol Chem 2004; 279 (43) 45257-45265
  • 72 Schroeder-Gloeckler JM, Rahman SM, Janssen RC. , et al. CCAAT/enhancer-binding protein beta deletion reduces adiposity, hepatic steatosis, and diabetes in Lepr(db/db) mice. J Biol Chem 2007; 282 (21) 15717-15729
  • 73 Millward CA, Heaney JD, Sinasac DS. , et al. Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta are protected against diet-induced obesity. Diabetes 2007; 56 (01) 161-167
  • 74 Huang J, Tabbi-Anneni I, Gunda V, Wang L. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am J Physiol Gastrointest Liver Physiol 2010; 299 (06) G1211-G1221
  • 75 Kay HY, Kim WD, Hwang SJ. , et al. Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid Redox Signal 2011; 15 (08) 2135-2146
  • 76 Zhang C, Wang G, Zheng Z. , et al. Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology 2012; 55 (04) 1070-1082
  • 77 Park JG, Xu X, Cho S. , et al. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Sci Rep 2016; 6: 27938
  • 78 Arensdorf AM, Dezwaan McCabe D, Kaufman RJ, Rutkowski DT. Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network. Front Genet 2013; 4: 188
  • 79 Herrema H, Zhou Y, Zhang D. , et al. XBP1s is an anti-lipogenic protein. J Biol Chem 2016; 291 (33) 17394-17404
  • 80 DeZwaan-McCabe D, Sheldon RD, Gorecki MC. , et al. ER stress inhibits liver fatty acid oxidation while unmitigated stress leads to anorexia-induced lipolysis and both liver and kidney steatosis. Cell Reports 2017; 19 (09) 1794-1806
  • 81 Choi K, Kim H, Kang H. , et al. Regulation of diacylglycerol acyltransferase 2 protein stability by gp78-associated endoplasmic-reticulum-associated degradation. FEBS J 2014; 281 (13) 3048-3060
  • 82 Yamaguchi K, Yang L, McCall S. , et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 2007; 45 (06) 1366-1374
  • 83 Charlton M, Sreekumar R, Rasmussen D, Lindor K, Nair KS. Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology 2002; 35 (04) 898-904
  • 84 Liao W, Chan L. Tunicamycin induces ubiquitination and degradation of apolipoprotein B in HepG2 cells. Biochem J 2001; 353 (Pt 3): 493-501
  • 85 Qiu W, Avramoglu RK, Rutledge AC, Tsai J, Adeli K. Mechanisms of glucosamine-induced suppression of the hepatic assembly and secretion of apolipoprotein B-100-containing lipoproteins. J Lipid Res 2006; 47 (08) 1749-1761
  • 86 Qiu W, Su Q, Rutledge AC, Zhang J, Adeli K. Glucosamine-induced endoplasmic reticulum stress attenuates apolipoprotein B100 synthesis via PERK signaling. J Lipid Res 2009; 50 (09) 1814-1823
  • 87 Jo H, Choe SS, Shin KC. , et al. Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the hepatic very low-density lipoprotein receptor. Hepatology 2013; 57 (04) 1366-1377
  • 88 Bravo R, Vicencio JM, Parra V. , et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 2011; 124 (Pt 13): 2143-2152
  • 89 Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med 2014; 20 (12) 1427-1435
  • 90 Chen X, Zhang F, Gong Q. , et al. Hepatic ATF6 increases fatty acid oxidation to attenuate hepatic steatosis in mice through peroxisome proliferator-activated receptor α. Diabetes 2016; 65 (07) 1904-1915
  • 91 Maillo C, Martín J, Sebastián D. , et al. Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nat Cell Biol 2017; 19 (02) 94-105
  • 92 Singh R, Kaushik S, Wang Y. , et al. Autophagy regulates lipid metabolism. Nature 2009; 458 (7242): 1131-1135
  • 93 González-Rodríguez A, Mayoral R, Agra N. , et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 2014; 5: e1179
  • 94 Ogata M, Hino S, Saito A. , et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26 (24) 9220-9231
  • 95 Margariti A, Li H, Chen T. , et al. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem 2013; 288 (02) 859-872
  • 96 B'chir W, Maurin AC, Carraro V. , et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 2013; 41 (16) 7683-7699
  • 97 Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115 (05) 1343-1351
  • 98 Lee JH, Giannikopoulos P, Duncan SA. , et al. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med 2011; 17 (07) 812-815
  • 99 Feldstein AE, Canbay A, Angulo P. , et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 2003; 125 (02) 437-443
  • 100 Wieckowska A, Zein NN, Yerian LM, Lopez AR, McCullough AJ, Feldstein AE. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 2006; 44 (01) 27-33
  • 101 Feldstein AE, Gores GJ. Apoptosis in alcoholic and nonalcoholic steatohepatitis. Front Biosci 2005; 10: 3093-3099
  • 102 Cazanave SC, Mott JL, Bronk SF. , et al. Death receptor 5 signaling promotes hepatocyte lipoapoptosis. J Biol Chem 2011; 286 (45) 39336-39348
  • 103 Cazanave SC, Elmi NA, Akazawa Y, Bronk SF, Mott JL, Gores GJ. CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am J Physiol Gastrointest Liver Physiol 2010; 299 (01) G236-G243
  • 104 Willy JA, Young SK, Stevens JL, Masuoka HC, Wek RC. CHOP links endoplasmic reticulum stress to NF-κB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell 2015; 26 (12) 2190-2204
  • 105 Lamkanfi M, Dixit VM. Inflammasomes: guardians of cytosolic sanctity. Immunol Rev 2009; 227 (01) 95-105
  • 106 Lebeaupin C, Proics E, de Bieville CH. , et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis 2015; 6: e1879
  • 107 Lee S, Kim S, Hwang S, Cherrington NJ, Ryu DY. Dysregulated expression of proteins associated with ER stress, autophagy and apoptosis in tissues from nonalcoholic fatty liver disease. Oncotarget 2017; 8 (38) 63370-63381
  • 108 Toriguchi K, Hatano E, Tanabe K. , et al. Attenuation of steatohepatitis, fibrosis, and carcinogenesis in mice fed a methionine-choline deficient diet by CCAAT/enhancer-binding protein homologous protein deficiency. J Gastroenterol Hepatol 2014; 29 (05) 1109-1118
  • 109 Malhi H, Kropp EM, Clavo VF. , et al. C/EBP homologous protein-induced macrophage apoptosis protects mice from steatohepatitis. J Biol Chem 2013; 288 (26) 18624-18642
  • 110 Pfaffenbach KT, Gentile CL, Nivala AM, Wang D, Wei Y, Pagliassotti MJ. Linking endoplasmic reticulum stress to cell death in hepatocytes: roles of C/EBP homologous protein and chemical chaperones in palmitate-mediated cell death. Am J Physiol Endocrinol Metab 2010; 298 (05) E1027-E1035
  • 111 Schattenberg JM, Singh R, Wang Y. , et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 2006; 43 (01) 163-172
  • 112 Liu H, Lo CR, Czaja MJ. NF-kappaB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun. Hepatology 2002; 35 (04) 772-778
  • 113 Czaja MJ. The future of GI and liver research: editorial perspectives. III. JNK/AP-1 regulation of hepatocyte death. Am J Physiol Gastrointest Liver Physiol 2003; 284 (06) G875-G879
  • 114 Olivares S, Henkel AS. Hepatic Xbp1 gene deletion promotes endoplasmic reticulum stress-induced liver injury and apoptosis. J Biol Chem 2015; 290 (50) 30142-30151
  • 115 Hetz C, Bernasconi P, Fisher J. , et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 2006; 312 (5773): 572-576
  • 116 Lebeaupin C, Vallée D, Rousseau D. , et al. Bax inhibitor-1 protects from nonalcoholic steatohepatitis by limiting inositol-requiring enzyme 1 alpha signaling in mice. Hepatology 2018
  • 117 Bailly-Maitre B, Belgardt BF, Jordan SD. , et al. Hepatic Bax inhibitor-1 inhibits IRE1alpha and protects from obesity-associated insulin resistance and glucose intolerance. J Biol Chem 2010; 285 (09) 6198-6207
  • 118 Zhang K, Wang S, Malhotra J. , et al. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis. EMBO J 2011; 30 (07) 1357-1375
  • 119 Liu X, Henkel AS, LeCuyer BE, Schipma MJ, Anderson KA, Green RM. Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet. Am J Physiol Gastrointest Liver Physiol 2015; 309 (12) G965-G974
  • 120 Tam AB, Koong AC, Niwa M. Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD. Cell Reports 2014; 9 (03) 850-858
  • 121 Lee AH, Heidtman K, Hotamisligil GS, Glimcher LH. Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion. Proc Natl Acad Sci U S A 2011; 108 (21) 8885-8890
  • 122 Wang JM, Qiu Y, Yang Z. , et al. IRE1α prevents hepatic steatosis by processing and promoting the degradation of select microRNAs. Sci Signal 2018; 11 (530) eaao4617
  • 123 Yang L, Calay ES, Fan J. , et al. METABOLISM. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science 2015; 349 (6247): 500-506
  • 124 Xie Q, Khaoustov VI, Chung CC. , et al. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology 2002; 36 (03) 592-601
  • 125 Vilatoba M, Eckstein C, Bilbao G. , et al. Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery 2005; 138 (02) 342-351
  • 126 Ozcan U, Yilmaz E, Ozcan L. , et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313 (5790): 1137-1140
  • 127 Jiménez-Castro MB, Elias-Miro M, Mendes-Braz M. , et al. Tauroursodeoxycholic acid affects PPARγ and TLR4 in Steatotic liver transplantation. Am J Transplant 2012; 12 (12) 3257-3271
  • 128 Namisaki T, Noguchi R, Moriya K. , et al. Beneficial effects of combined ursodeoxycholic acid and angiotensin-II type 1 receptor blocker on hepatic fibrogenesis in a rat model of nonalcoholic steatohepatitis. J Gastroenterol 2016; 51 (02) 162-172
  • 129 Lindor KD, Kowdley KV, Heathcote EJ. , et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology 2004; 39 (03) 770-778
  • 130 Dufour JF, Oneta CM, Gonvers JJ. , et al; Swiss Association for the Study of the Liver. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin e in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2006; 4 (12) 1537-1543
  • 131 Leuschner UF, Lindenthal B, Herrmann G. , et al; NASH Study Group. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology 2010; 52 (02) 472-479
  • 132 Kudo T. Therapeutic strategies for Alzheimer disease based on endoplasmic reticulum stress [in Japanese]. Nihon Shinkei Seishin Yakurigaku Zasshi 2010; 30 (04) 163-168
  • 133 Inokuchi Y, Nakajima Y, Shimazawa M. , et al. Effect of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced retinal cell death. Invest Ophthalmol Vis Sci 2009; 50 (01) 334-344
  • 134 Takano K, Tabata Y, Kitao Y. , et al. Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin. Am J Physiol Cell Physiol 2007; 292 (01) C353-C361
  • 135 Gorbatyuk MS, Gorbatyuk OS. The molecular chaperone GRP78/BiP as a therapeutic target for neurodegenerative disorders: a mini review. J Genet Syndr Gene Ther 2013; 4 (02) 128
  • 136 Win S, Than TA, Le BH, García-Ruiz C, Fernandez-Checa JC, Kaplowitz N. Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. J Hepatol 2015; 62 (06) 1367-1374
  • 137 Volkmann K, Lucas JL, Vuga D. , et al. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J Biol Chem 2011; 286 (14) 12743-12755
  • 138 Sanches M, Duffy NM, Talukdar M. , et al. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors. Nat Commun 2014; 5: 4202
  • 139 Cross BC, Bond PJ, Sadowski PG. , et al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci U S A 2012; 109 (15) E869-E878
  • 140 Heindryckx F, Binet F, Ponticos M. , et al. Endoplasmic reticulum stress enhances fibrosis through IRE1α-mediated degradation of miR-150 and XBP-1 splicing. EMBO Mol Med 2016; 8 (07) 729-744
  • 141 Ri M, Tashiro E, Oikawa D. , et al. Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood Cancer J 2012; 2 (07) e79
  • 142 Takahara I, Akazawa Y, Tabuchi M. , et al. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice. PLoS One 2017; 12 (03) e0170591
  • 143 Armstrong MJ, Gaunt P, Aithal GP. , et al; LEAN trial team. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016; 387 (10019): 679-690
  • 144 Yusta B, Baggio LL, Estall JL. , et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 2006; 4 (05) 391-406
  • 145 Schisano B, Harte AL, Lois K. , et al. GLP-1 analogue, Liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul Pept 2012; 174 (1-3): 46-52
  • 146 Cunha DA, Ladrière L, Ortis F. , et al. Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 2009; 58 (12) 2851-2862
  • 147 Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS One 2011; 6 (09) e25269
  • 148 Zheng X, Xu F, Liang H. , et al. SIRT1/HSF1/HSP pathway is essential for exenatide-alleviated, lipid-induced hepatic endoplasmic reticulum stress. Hepatology 2017; 66 (03) 809-824
  • 149 Ao N, Yang J, Wang X, Du J. Glucagon-like peptide-1 preserves non-alcoholic fatty liver disease through inhibition of the endoplasmic reticulum stress-associated pathway. Hepatol Res 2016; 46 (04) 343-353
  • 150 Nishitoh H, Saitoh M, Mochida Y. , et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 1998; 2 (03) 389-395
  • 151 Imarisio C, Alchera E, Bangalore Revanna C. , et al. Oxidative and ER stress-dependent ASK1 activation in steatotic hepatocytes and Kupffer cells sensitizes mice fatty liver to ischemia/reperfusion injury. Free Radic Biol Med 2017; 112: 141-148
  • 152 Yamamoto E, Dong YF, Kataoka K. , et al. Olmesartan prevents cardiovascular injury and hepatic steatosis in obesity and diabetes, accompanied by apoptosis signal regulating kinase-1 inhibition. Hypertension 2008; 52 (03) 573-580
  • 153 Zhang P, Wang PX, Zhao LP. , et al. The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis. Nat Med 2018; 24 (01) 84-94
  • 154 Schuster S, McGeough MD, Johnson CD. , et al. Apoptosis signal-regulating kinase 1 (ASK1) inhibition reduces liver fibrosis and apoptosis in a NLRP3 mutant model of NASH. J Hepatol 2017; 66 (Suppl. 01) S608-S609
  • 155 Liles JT, Zagorska A, Hollenback D. , et al. Combination of an ASK1 inhibitor and FXR agonist increases efficacy in a mouse model of non-alcoholic steatohepatitis. J Hepatol 2017; 66 (Suppl. 01) S19-S20
  • 156 Loomba R, Lawitz E, Mantry PS. , et al; GS-US-384-1497 Investigators. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 2017; 67 (02) 549-559
  • 157 Charlton M, Diehl AM, Sarkar N. , et al. The association of circulating microRNAs (miRs) with liver fibrosis stage and the impact of selonsertib treatment in patients with NASH. J Hepatol 2018; 68 (Suppl. 01) S572