Semin Hear 2018; 39(03): 257-274
DOI: 10.1055/s-0038-1666817
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Quantitative Vestibular Function Testing in the Pediatric Population

Kristen L. Janky
1   Department of Audiology, Boys Town National Research Hospital, Omaha, Nebraska
,
Amanda I. Rodriguez
1   Department of Audiology, Boys Town National Research Hospital, Omaha, Nebraska
› Author Affiliations
Further Information

Publication History

Publication Date:
20 July 2018 (online)

Abstract

Quantitative tests of vestibular function include the caloric test, cervical and ocular vestibular evoked myogenic potential (VEMP), rotary chair, and head impulse test, either at the bedside or utilizing video head impulse test (vHIT). The purpose of this article is to provide an overview of how to perform these tests in children, including which tests are recommended based on the child's age and any modifications or considerations that can be made. A variety of clinical measures have been recommended as screening measures for vestibular loss, which will be reviewed. Symptom questionnaires designed to assess the functional impact of dizziness and vestibular loss in children will also be discussed. If a child complains of dizziness or if vestibular loss is suspected (either by case history or positive screening measure), vestibular function testing is warranted. For vestibular function testing, children aged 0 to 2 years typically receive rotary chair, cervical VEMP, and vHIT if a remote system is available. For children aged 3 to 7 years, vHIT, cervical VEMP, and ocular VEMP are completed, and for children aged 8+ years, vHIT, caloric testing if vHIT is normal, and cervical and ocular VEMP are completed. For all children, modifications to testing can be made, as needed.

 
  • References

  • 1 O'Reilly RC, Morlet T, Nicholas BD. , et al. Prevalence of vestibular and balance disorders in children. Otol Neurotol 2010; 31 (09) 1441-1444
  • 2 Li CM, Hoffman HJ, Ward BK, Cohen HS, Rine RM. Epidemiology of dizziness and balance problems in children in the United States: a population-based study. J Pediatr 2016; 171: 240-7.e1 , 3
  • 3 Inoue A, Iwasaki S, Ushio M. , et al. Effect of vestibular dysfunction on the development of gross motor function in children with profound hearing loss. Audiol Neurootol 2013; 18 (03) 143-151
  • 4 Kaga K, Shinjo Y, Jin Y, Takegoshi H. Vestibular failure in children with congenital deafness. Int J Audiol 2008; 47 (09) 590-599
  • 5 O'Reilly RC, Greywoode J, Morlet T. , et al. Comprehensive vestibular and balance testing in the dizzy pediatric population. Otolaryngol Head Neck Surg 2011; 144 (02) 142-148
  • 6 Basta D, Todt I, Goepel F, Ernst A. Loss of saccular function after cochlear implantation: the diagnostic impact of intracochlear electrically elicited vestibular evoked myogenic potentials. Audiol Neurootol 2008; 13 (03) 187-192
  • 7 Cushing SL, Papsin BC, Rutka JA, James AL, Gordon KA. Evidence of vestibular and balance dysfunction in children with profound sensorineural hearing loss using cochlear implants. Laryngoscope 2008; 118 (10) 1814-1823
  • 8 Licameli G, Zhou G, Kenna MA. Disturbance of vestibular function attributable to cochlear implantation in children. Laryngoscope 2009; 119 (04) 740-745
  • 9 Colebatch JG, Halmagyi GM. Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation. Neurology 1992; 42 (08) 1635-1636
  • 10 Colebatch JG, Halmagyi GM, Skuse NF. Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 1994; 57 (02) 190-197
  • 11 Robertson DD, Ireland DJ. Vestibular evoked myogenic potentials. J Otolaryngol 1995; 24 (01) 3-8
  • 12 Rosengren SM, McAngus Todd NP, Colebatch JG. Vestibular-evoked extraocular potentials produced by stimulation with bone-conducted sound. Clin Neurophysiol 2005; 116 (08) 1938-1948
  • 13 Todd NP, Rosengren SM, Colebatch JG. A short latency vestibular evoked potential (VsEP) produced by bone-conducted acoustic stimulation. J Acoust Soc Am 2003; 114 (6, Pt 1): 3264-3272
  • 14 Todd NP, Rosengren SM, Aw ST, Colebatch JG. Ocular vestibular evoked myogenic potentials (OVEMPs) produced by air- and bone-conducted sound. Clin Neurophysiol 2007; 118 (02) 381-390
  • 15 Weber KP, Rosengren SM, Michels R, Sturm V, Straumann D, Landau K. Single motor unit activity in human extraocular muscles during the vestibulo-ocular reflex. J Physiol 2012; 590 (13) 3091-3101
  • 16 Curthoys IS, Iwasaki S, Chihara Y, Ushio M, McGarvie LA, Burgess AM. The ocular vestibular-evoked myogenic potential to air-conducted sound; probable superior vestibular nerve origin. Clin Neurophysiol 2011; 122 (03) 611-616
  • 17 Makowiec K, McCaslin DL, Jacobson GP, Hatton K, Lee J. Effect of electrode montage and head position on air-conducted ocular vestibular evoked myogenic potential. Am J Audiol 2017; 26 (02) 180-188
  • 18 Papathanasiou ES, Murofushi T, Akin FW, Colebatch JG. International guidelines for the clinical application of cervical vestibular evoked myogenic potentials: an expert consensus report. Clin Neurophysiol 2014; 125 (04) 658-666
  • 19 McCaslin DL, Jacobson GP, Hatton K, Fowler AP, DeLong AP. The effects of amplitude normalization and EMG targets on cVEMP interaural amplitude asymmetry. Ear Hear 2013; 34 (04) 482-490
  • 20 Bogle JM, Zapala DA, Criter R, Burkard R. The effect of muscle contraction level on the cervical vestibular evoked myogenic potential (cVEMP): usefulness of amplitude normalization. J Am Acad Audiol 2013; 24 (02) 77-88
  • 21 McCaslin DL, Fowler A, Jacobson GP. Amplitude normalization reduces cervical vestibular evoked myogenic potential (cVEMP) amplitude asymmetries in normal subjects: proof of concept. J Am Acad Audiol 2014; 25 (03) 268-277
  • 22 Isaradisaikul S, Navacharoen N, Hanprasertpong C, Kangsanarak J. Cervical vestibular-evoked myogenic potentials: norms and protocols. Int J Otolaryngol 2012; 2012: 913515 . doi: 10.1155/2012/913515
  • 23 Wang SJ, Chen CN, Hsieh WS, Young YH. Development of vestibular evoked myogenic potentials in preterm neonates. Audiol Neurootol 2008; 13 (03) 145-152
  • 24 Sheykholeslami K, Megerian CA, Arnold JE, Kaga K. Vestibular-evoked myogenic potentials in infancy and early childhood. Laryngoscope 2005; 115 (08) 1440-1444
  • 25 Kelsch TA, Schaefer LA, Esquivel CR. Vestibular evoked myogenic potentials in young children: test parameters and normative data. Laryngoscope 2006; 116 (06) 895-900
  • 26 Maes L, De Kegel A, Van Waelvelde H, Dhooge I. Rotatory and collic vestibular evoked myogenic potential testing in normal-hearing and hearing-impaired children. Ear Hear 2014; 35 (02) e21-e32
  • 27 Rodriguez AT, Thomas MLA, Fitzpatrick D, Janky KL. Effects of high sound pressure exposure during air-conducted vestibular evoked myogenic potential testing in children and young adults. Ear Hear 2018; 39 (02) 269-277
  • 28 Zhou G, Kenna MA, Stevens K, Licameli G. Assessment of saccular function in children with sensorineural hearing loss. Arch Otolaryngol Head Neck Surg 2009; 135 (01) 40-44
  • 29 Rodriguez A, Thomas MLA, Janky K. Air-conducted vestibular evoked myogenic potential testing in children, adolescents, and young adults: thresholds, frequency tuning, and effects of sound exposure. Ear Hear 2018; [Epub ahead of print] DOI: 10.1097/AUD0000000000000607.
  • 30 Taylor RL, Bradshaw AP, Magnussen JS, Gibson WP, Halmagyi GM, Welgampola MS. Augmented ocular vestibular evoked myogenic potentials to air-conducted sound in large vestibular aqueduct syndrome. Ear Hear 2012; 33 (06) 768-771
  • 31 Taylor RL, Bradshaw AP, Halmagyi GM, Welgampola MS. Tuning characteristics of ocular and cervical vestibular evoked myogenic potentials in intact and dehiscent ears. Audiol Neurootol 2012; 17 (04) 207-218
  • 32 Valente M. Maturational effects of the vestibular system: a study of rotary chair, computerized dynamic posturography, and vestibular evoked myogenic potentials with children. J Am Acad Audiol 2007; 18 (06) 461-481
  • 33 Janky KL, Givens D. Vestibular, visual acuity, and balance outcomes in children with cochlear implants: a preliminary report. Ear Hear 2015; 36 (06) e364-e372
  • 34 Young YH. Assessment of functional development of the otolithic system in growing children: a review. Int J Pediatr Otorhinolaryngol 2015; 79 (04) 435-442
  • 35 Wang SJ, Hsieh WS, Young YH. Development of ocular vestibular-evoked myogenic potentials in small children. Laryngoscope 2013; 123 (02) 512-517
  • 36 Hsu YS, Wang SJ, Young YH. Ocular vestibular-evoked myogenic potentials in children using air conducted sound stimulation. Clin Neurophysiol 2009; 120 (07) 1381-1385
  • 37 Chou CH, Hsu WC, Young YH. Ocular vestibular-evoked myogenic potentials via bone-conducted vibration in children. Clin Neurophysiol 2012; 123 (09) 1880-1885
  • 38 Piker EG, Jacobson GP, McCaslin DL, Hood LJ. Normal characteristics of the ocular vestibular evoked myogenic potential. J Am Acad Audiol 2011; 22 (04) 222-230
  • 39 Cushing SL, Papsin BC, Rutka JA, James AL, Blaser SL, Gordon KA. Vestibular end-organ and balance deficits after meningitis and cochlear implantation in children correlate poorly with functional outcome. Otol Neurotol 2009; 30 (04) 488-495
  • 40 Young YH. Vestibular evoked myogenic potentials: optimal stimulation and clinical application. J Biomed Sci 2006; 13 (06) 745-751
  • 41 Krause E, Mayerhofer A, Gürkov R. , et al. Effects of acoustic stimuli used for vestibular evoked myogenic potential studies on the cochlear function. Otol Neurotol 2013; 34 (07) 1186-1192
  • 42 Strömberg AK, Olofsson Å, Westin M, Duan M, Stenfelt S. Changes in cochlear function related to acoustic stimulation of cervical vestibular evoked myogenic potential stimulation. Hear Res 2016; 340: 43-49
  • 43 Mattingly JK, Portnuff CD, Hondorp BM, Cass SP. Sudden bilateral hearing loss after cervical and ocular vestibular evoked myogenic potentials. Otol Neurotol 2015; 36 (06) 961-964
  • 44 Thomas MLA, Fitzpatrick D, McCreery R, Janky KL. Big stimulus, little ears: safety in administering vestibular-evoked myogenic potentials in children. J Am Acad Audiol 2017; 28 (05) 395-403
  • 45 Chen CN, Wang SJ, Wang CT, Hsieh WS, Young YH. Vestibular evoked myogenic potentials in newborns. Audiol Neurootol 2007; 12 (01) 59-63
  • 46 Salloway SP. Rooting reflex. In: Kreutzer J, DeLuca J, Caplan B. , eds. Encyclopedia of Clinical Neuropsychology. New York, NY: Springer; 2011: 161-173
  • 47 Yang CJ, Lavender V, Meinzen-Derr JK. , et al. Vestibular pathology in children with enlarged vestibular aqueduct. Laryngoscope 2016; 126 (10) 2344-2350
  • 48 Govender S, Rosengren SM, Colebatch JG. The effect of gaze direction on the ocular vestibular evoked myogenic potential produced by air-conducted sound. Clin Neurophysiol 2009; 120 (07) 1386-1391
  • 49 Huang YC, Yang TL, Young YH. Feasibility of ocular vestibular-evoked myogenic potentials (oVEMPs) recorded with eyes closed. Clin Neurophysiol 2012; 123 (02) 376-381
  • 50 Colebatch JG, Rosengren SM. Safe levels of acoustic stimulation: comment on “effects of acoustic stimuli used for vestibular evoked myogenic potential studies on the cochlear function”. Otol Neurotol 2014; 35 (05) 932-933
  • 51 European Union. Directive 2003/10/EC of the European Parliament and of the Council on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (noise) (Seventeenth individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC). Official Journal L 2003;042:0038–0044
  • 52 Chihara Y, Iwasaki S, Ushio M, Murofushi T. Vestibular-evoked extraocular potentials by air-conducted sound: another clinical test for vestibular function. Clin Neurophysiol 2007; 118 (12) 2745-2751
  • 53 Halmagyi GM, Curthoys IS. A clinical sign of canal paresis. Arch Neurol 1988; 45 (07) 737-739
  • 54 MacDougall HG, Weber KP, McGarvie LA, Halmagyi GM, Curthoys IS. The video head impulse test: diagnostic accuracy in peripheral vestibulopathy. Neurology 2009; 73 (14) 1134-1141
  • 55 McGarvie LA, MacDougall HG, Halmagyi GM, Burgess AM, Weber KP, Curthoys IS. The video head impulse test (vHIT) of semicircular canal function - Age-dependent normative values of VOR gain in healthy subjects. Front Neurol 2015; 6: 154
  • 56 Hamilton SS, Zhou G, Brodsky JR. Video head impulse testing (VHIT) in the pediatric population. Int J Pediatr Otorhinolaryngol 2015; 79 (08) 1283-1287
  • 57 Janky KL, Patterson J, Shepard N. , et al. Video head impulse test (vHIT): The role of corrective saccades in identifying patients with vestibular loss. Otol Neurotol 2018; 39 (04) 467-473
  • 58 Lehnen N, Ramaioli C, Todd NS. , et al. Clinical and video head impulses: a simple bedside test in children. J Neurol 2017; 264 (05) 1002-1004
  • 59 Ross LM, Helminski JO. Test-retest and interrater reliability of the video head impulse test in the pediatric population. Otol Neurotol 2016; 37 (05) 558-563
  • 60 Wiener-Vacher SR, Wiener SI. Video head impulse tests with a remote camera system: normative values of semicircular canal vestibulo-ocular reflex gain in infants and children. Front Neurol 2017; 8: 434
  • 61 Davalos-Bichara M, Agrawal Y. Normative results of healthy older adults on standard clinical vestibular tests. Otol Neurotol 2014; 35 (02) 297-300
  • 62 Matiño-Soler E, Esteller-More E, Martin-Sanchez JC, Martinez-Sanchez JM, Perez-Fernandez N. Normative data on angular vestibulo-ocular responses in the yaw axis measured using the video head impulse test. Otol Neurotol 2015; 36 (03) 466-471
  • 63 Hülse R, Hörmann K, Servais JJ, Hülse M, Wenzel A. Clinical experience with video Head Impulse Test in children. Int J Pediatr Otorhinolaryngol 2015; 79 (08) 1288-1293
  • 64 Mantokoudis G, Saber Tehrani AS, Kattah JC. , et al. Quantifying the vestibulo-ocular reflex with video-oculography: nature and frequency of artifacts. Audiol Neurootol 2015; 20 (01) 39-50
  • 65 Charpiot A, Tringali S, Ionescu E, Vital-Durand F, Ferber-Viart C. Vestibulo-ocular reflex and balance maturation in healthy children aged from six to twelve years. Audiol Neurootol 2010; 15 (04) 203-210
  • 66 Chan FM, Galatioto J, Amato M, Kim AH. Normative data for rotational chair stratified by age. Laryngoscope 2016; 126 (02) 460-463
  • 67 Casselbrant ML, Mandel EM, Sparto PJ. , et al. Longitudinal posturography and rotational testing in children three to nine years of age: normative data. Otolaryngol Head Neck Surg 2010; 142 (05) 708-714
  • 68 Staller SJ, Goin DW, Hildebrandt M. Pediatric vestibular evaluation with harmonic acceleration. Otolaryngol Head Neck Surg 1986; 95 (04) 471-476
  • 69 Eviatar L, Eviatar A. The normal nystagmic response of infants to caloric and per rotatory stimulation. Laryngoscope 1979; 89 (7, Pt 1): 1036-1045
  • 70 Casselbrant ML, Furman JM, Mandel EM, Fall PA, Kurs-Lasky M, Rockette HE. Past history of otitis media and balance in four-year-old children. Laryngoscope 2000; 110 (5, Pt 1): 773-778
  • 71 Jongkees LB, Maas JP, Philipszoon AJ. Clinical nystagmography. A detailed study of electro-nystagmography in 341 patients with vertigo. Pract Otorhinolaryngol (Basel) 1962; 24: 65-93
  • 72 Andrieu-Guitrancourt J, Peron JM, Dehesdin D, Aubet J, Courtin P. Normal vestibular responses to air caloric tests in children. Int J Pediatr Otorhinolaryngol 1981; 3 (03) 245-250
  • 73 McCaslin DL, Jacobson GP, Bennett ML, Gruenwald JM, Green AP. Predictive properties of the video head impulse test: measures of caloric symmetry and self-report dizziness handicap. Ear Hear 2014; 35 (05) e185-e191
  • 74 Brookhouser PE, Cyr DG, Peters JE, Schulte LE. Correlates of vestibular evaluation results during the first year of life. Laryngoscope 1991; 101 (7, Pt 1): 687-694
  • 75 Christy JB, Payne J, Azuero A, Formby C. Reliability and diagnostic accuracy of clinical tests of vestibular function for children. Pediatr Phys Ther 2014; 26 (02) 180-189
  • 76 Oyewumi M, Wolter NE, Heon E, Gordon KA, Papsin BC, Cushing SL. Using balance function to screen for vestibular impairment in children with sensorineural hearing loss and cochlear implants. Otol Neurotol 2016; 37 (07) 926-932
  • 77 Janky KL, Thomas MLA, High RR, Schmid KK, Ogun OA. Predictive factors for vestibular loss in children with hearing loss. Am J Audiol 2018; 27 (01) 137-146
  • 78 McCaslin DL, Jacobson GP, Lambert W, English LN, Kemph AJ. The development of the Vanderbilt pediatric dizziness handicap inventory for patient caregivers (DHI-PC). Int J Pediatr Otorhinolaryngol 2015; 79 (10) 1662-1666
  • 79 Pavlou M, Whitney S, Alkathiry AA. , et al. The Pediatric Vestibular Symptom Questionnaire: a validation study. J Pediatr 2016; 168: 171-7.e1
  • 80 Pavlou M, Whitney SL, Alkathiry AA. , et al. Visually induced dizziness in children and validation of the pediatric visually induced dizziness questionnaire. Front Neurol 2017; 8: 656
  • 81 Janky KL, Thomas MLA, High RR, Schmid KK, Ogen A. Predictive factors for vestibular loss in children with hearing loss. Am J Audiol 2018; 27 (01) 137-146