Semin Thromb Hemost 2018; 44(07): 683-690
DOI: 10.1055/s-0038-1657778
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Thrombocytopenia and Platelet Dysfunction in Acute Tropical Infectious Diseases

Indri Hapsari Putri
1   Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
2   Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
,
Rahajeng N. Tunjungputri
2   Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
,
Philip G. De Groot
1   Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
,
Andre J. van der Ven
1   Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
,
Quirijn de Mast
1   Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
18 June 2018 (online)

Abstract

Thrombocytopenia is a well-known manifestation of acute tropical infectious diseases. The role of platelets in infections has received much attention recently because of their emerging activities in modulation of inflammatory responses, host defense, and vascular integrity. However, while many studies have addressed thrombocytopenia in tropical infections, abnormalities in platelet function have been largely overlooked. This is an important research gap, as platelet dysfunction may contribute to the bleeding tendency that characterizes some tropical infections. The development of novel platelet function assays that can be used in thrombocytopenic conditions (e.g., flow cytometry assays) has contributed to important new insights in recent years. In this review, the importance of platelets in tropical infections is discussed with special emphasis on the underlying mechanisms and consequences of thrombocytopenia and platelet dysfunction in these infections. Special attention is paid to malaria, a disease characterized by microvascular obstruction in which bleeding is rare, and to infections in which bleeding is common, such as dengue, other viral hemorrhagic fevers, and the bacterial infection leptospirosis. Given the importance of platelet function abnormalities in these infections, the development of affordable assays for monitoring of platelet function in low-resource countries, as well as pharmacologic interventions to prevent or reverse platelet function abnormalities, might improve clinical care and the prognosis of these infections.

 
  • References

  • 1 Lozano R, Naghavi M, Foreman K. , et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 (9859): 2095-2128
  • 2 Renshaw AA, Gould EW. Thrombocytosis is associated with Mycobacterium tuberculosis infection and positive acid-fast stains in granulomas. Am J Clin Pathol 2013; 139 (05) 584-586
  • 3 Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11 (04) 264-274
  • 4 Kasirer-Friede A, Kahn ML, Shattil SJ. Platelet integrins and immunoreceptors. Immunol Rev 2007; 218: 247-264
  • 5 Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 2012; 34 (01) 5-30
  • 6 Jonnalagadda D, Izu LT, Whiteheart SW. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood 2012; 120 (26) 5209-5216
  • 7 Blair P, Flaumenhaft R. Platelet α-granules: basic biology and clinical correlates. Blood Rev 2009; 23 (04) 177-189
  • 8 Rivera J, Lozano ML, Navarro-Núñez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 2009; 94 (05) 700-711
  • 9 Furie B, Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 2004; 10 (04) 171-178
  • 10 Hanson J, Phu NH, Hasan MU. , et al. The clinical implications of thrombocytopenia in adults with severe falciparum malaria: a retrospective analysis. BMC Med 2015; 13: 97
  • 11 Lam PK, Ngoc TV, Thu Thuy TT. , et al. The value of daily platelet counts for predicting dengue shock syndrome: results from a prospective observational study of 2301 Vietnamese children with dengue. PLoS Negl Trop Dis 2017; 11 (04) e0005498
  • 12 Lampah DA, Yeo TW, Malloy M. , et al. Severe malarial thrombocytopenia: a risk factor for mortality in Papua, Indonesia. J Infect Dis 2015; 211 (04) 623-634
  • 13 Mourão MP, Lacerda MV, Macedo VO, Santos JB. Thrombocytopenia in patients with dengue virus infection in the Brazilian Amazon. Platelets 2007; 18 (08) 605-612
  • 14 Würtz M, Hvas AM, Kristensen SD, Grove EL. Platelet aggregation is dependent on platelet count in patients with coronary artery disease. Thromb Res 2012; 129 (01) 56-61
  • 15 Favaloro EJ, Lippi G, Franchini M. Contemporary platelet function testing. Clin Chem Lab Med 2010; 48 (05) 579-598
  • 16 van Bladel ER, Laarhoven AG, van der Heijden LB. , et al. Functional platelet defects in children with severe chronic ITP as tested with 2 novel assays applicable for low platelet counts. Blood 2014; 123 (10) 1556-1563
  • 17 Vinholt PJ, Frederiksen H, Hvas AM, Sprogøe U, Nielsen C. Measurement of platelet aggregation, independently of patient platelet count: a flow-cytometric approach. J Thromb Haemost 2017; 15 (06) 1191-1202
  • 18 Baaten CCFMJ, Ten Cate H, van der Meijden PEJ, Heemskerk JWM. Platelet populations and priming in hematological diseases. Blood Rev 2017; 31 (06) 389-399
  • 19 WHO. World Malaria Report 2015. Malaria. Geneva, Switzerland: World Health Organization; 2015
  • 20 Prasad R, Das BK, Pengoria R, Mishra OP, Shukla J, Singh TB. Coagulation status and platelet functions in children with severe falciparum malaria and their correlation of outcome. J Trop Pediatr 2009; 55 (06) 374-378
  • 21 Srichaikul T, Pulket C, Sirisatepisarn T, Prayoonwiwat W. Platelet dysfunction in malaria. Southeast Asian J Trop Med Public Health 1988; 19 (02) 225-233
  • 22 Mohanty D, Marwaha N, Ghosh K. , et al. Functional and ultrastructural changes of platelets in malarial infection. Trans R Soc Trop Med Hyg 1988; 82 (03) 369-375
  • 23 Essien EM, Ebhota MI. Platelet hypersensitivity in acute malaria (Plasmodium falciparum) infection in man. Thromb Haemost 1981; 46 (02) 547-549
  • 24 Karanikas G, Zedwitz-Liebenstein K, Eidherr H. , et al. Platelet kinetics and scintigraphic imaging in thrombocytopenic malaria patients. Thromb Haemost 2004; 91 (03) 553-557
  • 25 de Mast Q, de Groot PG, van Heerde WL. , et al. Thrombocytopenia in early malaria is associated with GP1b shedding in absence of systemic platelet activation and consumptive coagulopathy. Br J Haematol 2010; 151 (05) 495-503
  • 26 de Mast Q, Groot E, Lenting PJ. , et al. Thrombocytopenia and release of activated von Willebrand factor during early Plasmodium falciparum malaria. J Infect Dis 2007; 196 (04) 622-628
  • 27 Park GS, Ireland KF, Opoka RO, John CC. Evidence of endothelial activation in asymptomatic Plasmodium falciparum parasitemia and effect of blood group on levels of von Willebrand factor in malaria. J Pediatric Infect Dis Soc 2012; 1 (01) 16-25
  • 28 Phiri HT, Bridges DJ, Glover SJ. , et al. Elevated plasma von Willebrand factor and propeptide levels in Malawian children with malaria. PLoS One 2011; 6 (11) e25626
  • 29 Löwenberg EC, Charunwatthana P, Cohen S. , et al. Severe malaria is associated with a deficiency of von Willebrand factor cleaving protease, ADAMTS13. Thromb Haemost 2010; 103 (01) 181-187
  • 30 Larkin D, de Laat B, Jenkins PV. , et al. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition. PLoS Pathog 2009; 5 (03) e1000349
  • 31 de Mast Q, Groot E, Asih PB. , et al. ADAMTS13 deficiency with elevated levels of ultra-large and active von Willebrand factor in P. falciparum and P. vivax malaria. Am J Trop Med Hyg 2009; 80 (03) 492-498
  • 32 Hollestelle MJ, Donkor C, Mantey EA. , et al. von Willebrand factor propeptide in malaria: evidence of acute endothelial cell activation. Br J Haematol 2006; 133 (05) 562-569
  • 33 Gill JC, Endres-Brooks J, Bauer PJ, Marks Jr WJ, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 1987; 69 (06) 1691-1695
  • 34 Fischer PR, Boone P. Short report: severe malaria associated with blood group. Am J Trop Med Hyg 1998; 58 (01) 122-123
  • 35 Panda AK, Panda SK, Sahu AN, Tripathy R, Ravindran B, Das BK. Association of ABO blood group with severe falciparum malaria in adults: case control study and meta-analysis. Malar J 2011; 10: 309
  • 36 Dondorp AM, Ince C, Charunwatthana P. , et al. Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J Infect Dis 2008; 197 (01) 79-84
  • 37 Wassmer SC, Lépolard C, Traoré B, Pouvelle B, Gysin J, Grau GE. Platelets reorient Plasmodium falciparum-infected erythrocyte cytoadhesion to activated endothelial cells. J Infect Dis 2004; 189 (02) 180-189
  • 38 Grau GE, Mackenzie CD, Carr RA. , et al. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J Infect Dis 2003; 187 (03) 461-466
  • 39 Bridges DJ, Bunn J, van Mourik JA. , et al. Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings. Blood 2010; 115 (07) 1472-1474
  • 40 O'Regan N, Gegenbauer K, O'Sullivan JM. , et al. A novel role for von Willebrand factor in the pathogenesis of experimental cerebral malaria. Blood 2016; 127 (09) 1192-1201
  • 41 White NJ, Turner GD, Medana IM, Dondorp AM, Day NP. The murine cerebral malaria phenomenon. Trends Parasitol 2010; 26 (01) 11-15
  • 42 McMorran BJ, Burgio G, Foote SJ. New insights into the protective power of platelets in malaria infection. Commun Integr Biol 2013; 6 (03) e23653
  • 43 McMorran BJ, Marshall VM, de Graaf C. , et al. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 2009; 323 (5915): 797-800
  • 44 Gramaglia I, Velez J, Combes V, Grau GE, Wree M, van der Heyde HC. Platelets activate a pathogenic response to blood-stage Plasmodium infection but not a protective immune response. Blood 2017; 129 (12) 1669-1679
  • 45 Bhatt S, Gething PW, Brady OJ. , et al. The global distribution and burden of dengue. Nature 2013; 496 (7446): 504-507
  • 46 Tomashek KM, Lorenzi OD, Andújar-Pérez DA. , et al. Clinical and epidemiologic characteristics of dengue and other etiologic agents among patients with acute febrile illness, Puerto Rico, 2012-2015. PLoS Negl Trop Dis 2017; 11 (09) e0005859
  • 47 Potts JA, Rothman AL. Clinical and laboratory features that distinguish dengue from other febrile illnesses in endemic populations. Trop Med Int Health 2008; 13 (11) 1328-1340
  • 48 Schexneider KI, Reedy EA. Thrombocytopenia in dengue fever. Curr Hematol Rep 2005; 4 (02) 145-148
  • 49 Colombo TE, Estofolete CF, Reis AFN. , et al. Clinical, laboratory and virological data from suspected ZIKV patients in an endemic arbovirus area. J Clin Virol 2017; 96: 20-25
  • 50 Lee VJ, Chow A, Zheng X. , et al. Simple clinical and laboratory predictors of Chikungunya versus dengue infections in adults. PLoS Negl Trop Dis 2012; 6 (09) e1786
  • 51 Boyer Chammard T, Schepers K, Breurec S. , et al. Severe thrombocytopenia after Zika virus infection, Guadeloupe, 2016. Emerg Infect Dis 2017; 23 (04) 696-698
  • 52 Sharp TM, Muñoz-Jordán J, Perez-Padilla J. , et al. Zika virus infection associated with severe thrombocytopenia. Clin Infect Dis 2016; 63 (09) 1198-1201
  • 53 WHO Guidelines Approved by the Guidelines Review Committee. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva, Switzerland: World Health Organization; 2009
  • 54 Michels M, Alisjahbana B, De Groot PG. , et al. Platelet function alterations in dengue are associated with plasma leakage. Thromb Haemost 2014; 112 (02) 352-362
  • 55 Trugilho MRO, Hottz ED, Brunoro GVF. , et al. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue. PLoS Pathog 2017; 13 (05) e1006385
  • 56 Iannacone M, Sitia G, Isogawa M. , et al. Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A 2008; 105 (02) 629-634
  • 57 Hottz ED, Oliveira MF, Nunes PC. , et al. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost 2013; 11 (05) 951-962
  • 58 Ghosh K, Gangodkar S, Jain P. , et al. Imaging the interaction between dengue 2 virus and human blood platelets using atomic force and electron microscopy. J Electron Microsc (Tokyo) 2008; 57 (03) 113-118
  • 59 Ojha A, Nandi D, Batra H. , et al. Platelet activation determines the severity of thrombocytopenia in dengue infection. Sci Rep 2017; 7: 41697
  • 60 Simon AY, Sutherland MR, Pryzdial EL. Dengue virus binding and replication by platelets. Blood 2015; 126 (03) 378-385
  • 61 Noisakran S, Gibbons RV, Songprakhon P. , et al. Detection of dengue virus in platelets isolated from dengue patients. Southeast Asian J Trop Med Public Health 2009; 40 (02) 253-262
  • 62 Djamiatun K, van der Ven AJ, de Groot PG. , et al. Severe dengue is associated with consumption of von Willebrand factor and its cleaving enzyme ADAMTS-13. PLoS Negl Trop Dis 2012; 6 (05) e1628
  • 63 Alonzo MT, Lacuesta TL, Dimaano EM. , et al. Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections. J Infect Dis 2012; 205 (08) 1321-1329
  • 64 Honda S, Saito M, Dimaano EM. , et al. Increased phagocytosis of platelets from patients with secondary dengue virus infection by human macrophages. Am J Trop Med Hyg 2009; 80 (05) 841-845
  • 65 La Russa VF, Innis BL. Mechanisms of dengue virus-induced bone marrow suppression. Baillieres Clin Haematol 1995; 8 (01) 249-270
  • 66 Nachman RL, Rafii S. Platelets, petechiae, and preservation of the vascular wall. N Engl J Med 2008; 359 (12) 1261-1270
  • 67 Goerge T, Ho-Tin-Noe B, Carbo C. , et al. Inflammation induces hemorrhage in thrombocytopenia. Blood 2008; 111 (10) 4958-4964
  • 68 Hottz ED, Lopes JF, Freitas C. , et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 2013; 122 (20) 3405-3414
  • 69 Hottz ED, Medeiros-de-Moraes IM, Vieira-de-Abreu A. , et al. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J Immunol 2014; 193 (04) 1864-1872
  • 70 Michels M, van der Ven AJ, Djamiatun K. , et al. Imbalance of angiopoietin-1 and angiopoetin-2 in severe dengue and relationship with thrombocytopenia, endothelial activation, and vascular stability. Am J Trop Med Hyg 2012; 87 (05) 943-946
  • 71 Michels M, Japtok L, Alisjahbana B. , et al. Decreased plasma levels of the endothelial protective sphingosine-1-phosphate are associated with dengue-induced plasma leakage. J Infect 2015; 71 (04) 480-487
  • 72 Yacoub S, Lam PK, Vu HM. , et al. Association of microvascular function and endothelial biomarkers with clinical outcome in dengue: an observational study. J Infect Dis 2016; 214 (05) 697-706
  • 73 Dimaano EM, Saito M, Honda S. , et al. Lack of efficacy of high-dose intravenous immunoglobulin treatment of severe thrombocytopenia in patients with secondary dengue virus infection. Am J Trop Med Hyg 2007; 77 (06) 1135-1138
  • 74 Tam DT, Ngoc TV, Tien NT. , et al. Effects of short-course oral corticosteroid therapy in early dengue infection in Vietnamese patients: a randomized, placebo-controlled trial. Clin Infect Dis 2012; 55 (09) 1216-1224
  • 75 Lye DC, Archuleta S, Syed-Omar SF. , et al. Prophylactic platelet transfusion plus supportive care versus supportive care alone in adults with dengue and thrombocytopenia: a multicentre, open-label, randomised, superiority trial. Lancet 2017; 389 (10079): 1611-1618
  • 76 Zapata JC, Cox D, Salvato MS. The role of platelets in the pathogenesis of viral hemorrhagic fevers. PLoS Negl Trop Dis 2014; 8 (06) e2858
  • 77 Settergren B, Juto P, Trollfors B, Wadell G, Norrby SR. Clinical characteristics of nephropathia epidemica in Sweden: prospective study of 74 cases. Rev Infect Dis 1989; 11 (06) 921-927
  • 78 Outinen TK, Laine OK, Mäkelä S. , et al. Thrombocytopenia associates with the severity of inflammation and variables reflecting capillary leakage in Puumala hantavirus infection, an analysis of 546 Finnish patients. Infect Dis (Lond) 2016; 48 (09) 682-687
  • 79 Connolly-Andersen AM, Sundberg E, Ahlm C. , et al. Increased thrombopoiesis and platelet activation in hantavirus-infected patients. J Infect Dis 2015; 212 (07) 1061-1069
  • 80 Laine O, Joutsi-Korhonen L, Lassila R. , et al. Elevated thrombopoietin and platelet indices confirm active thrombopoiesis but fail to predict clinical severity of puumala hantavirus infection. Medicine (Baltimore) 2016; 95 (52) e5689
  • 81 Laine O, Joutsi-Korhonen L, Lassila R. , et al. Hantavirus infection-induced thrombocytopenia triggers increased production but associates with impaired aggregation of platelets except for collagen. Thromb Res 2015; 136 (06) 1126-1132
  • 82 Fisher-Hoch S, McCormick JB, Sasso D, Craven RB. Hematologic dysfunction in Lassa fever. J Med Virol 1988; 26 (02) 127-135
  • 83 Cummins D, Fisher-Hoch SP, Walshe KJ. , et al. A plasma inhibitor of platelet aggregation in patients with Lassa fever. Br J Haematol 1989; 72 (04) 543-548
  • 84 Hunt L, Gupta-Wright A, Simms V. , et al. Clinical presentation, biochemical, and haematological parameters and their association with outcome in patients with Ebola virus disease: an observational cohort study. Lancet Infect Dis 2015; 15 (11) 1292-1299
  • 85 Fisher-Hoch SP, Platt GS, Lloyd G, Simpson DI, Neild GH, Barrett AJ. Haematological and biochemical monitoring of Ebola infection in rhesus monkeys: implications for patient management. Lancet 1983; 2 (8358): 1055-1058
  • 86 Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interactions with bacteria. Front Immunol 2015; 6: 82
  • 87 Tunjungputri RN, de Jonge MI, de Greeff A. , et al. Invasive pneumococcal disease leads to activation and hyperreactivity of platelets. Thromb Res 2016; 144: 123-126
  • 88 Tunjungputri RN, van de Heijden W, Urbanus RT, de Groot PG, van der Ven A, de Mast Q. Higher platelet reactivity and platelet-monocyte complex formation in gram-positive sepsis compared to gram-negative sepsis. Platelets 2017; 28 (06) 595-601
  • 89 De Silva NL, Niloofa M, Fernando N. , et al. Changes in full blood count parameters in leptospirosis: a prospective study. Int Arch Med 2014; 7: 31
  • 90 Daher EF, Silva GB, Silveira CO. , et al. Factors associated with thrombocytopenia in severe leptospirosis (Weil's disease). Clinics (Sao Paulo) 2014; 69 (02) 106-110
  • 91 Haake DA, Levett PN. Leptospirosis in humans. Curr Top Microbiol Immunol 2015; 387: 65-97
  • 92 Nicodemo AC, Duarte MI, Alves VA, Takakura CF, Santos RT, Nicodemo EL. Lung lesions in human leptospirosis: microscopic, immunohistochemical, and ultrastructural features related to thrombocytopenia. Am J Trop Med Hyg 1997; 56 (02) 181-187
  • 93 Tunjungputri RN, Gasem MH, van der Does W. , et al. Platelet dysfunction contributes to bleeding complications in patients with probable leptospirosis. PLoS Negl Trop Dis 2017; 11 (09) e0005915
  • 94 Middelburg RA, Carbaat-Ham JC, Hesam H, Ragusi MA, Zwaginga JJ. Platelet function in adult ITP patients can be either increased or decreased, compared to healthy controls, and is associated with bleeding risk. Hematology 2016; 21 (09) 549-551
  • 95 Frelinger III AL, Grace RF, Gerrits AJ. , et al. Platelet function tests, independent of platelet count, are associated with bleeding severity in ITP. Blood 2015; 126 (07) 873-879