Vet Comp Orthop Traumatol 1988; 01(01): 7-17
DOI: 10.1055/s-0038-1633151
Short Communication
Schattauer GmbH

Structural Adaptations to Mechanical Usage. A Proposed “Three-Way Rule” for Bone Modeling

Part I
H. M. Frost
1   From the Southern Colorado Clinic, Purdue University, Pueblo, CO 81004, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
22 February 2018 (online)

A collection of fundamental structural adaptations is defined for how compacta and spongiosa respond to overloading in compression, tension and flexure, alone and in combinations. Those adaptations underlie most physiological tissue- and organ-level structural adaptations of healthy intact bones to mechanical usage, so explaining them is a major task for models of mechanical determinants of bone architecture. A biomechanical function called the Gamma function is then devised to predict from a structure's net end-loads and the strain history of any given small bone surface domain, whether mechanically induced formation, resorption or neither will occur in that domain. A separate function is devised to predict local rates of modeling from local strain histories. These functions correctly predict varied details of all of the fundamental adaptations and they also suggest new laws for the mechanical control of bone architecture, some of which are presented. The threeway rule is a new way to analyse the mechanical determinants of bone architecture that accounts for bone-biological realities learned after 1960.

 
  • References

  • 1 Frost H M. Intermediary Organization of the Skeleton. Boca Raton: CRC Press; 1986
  • 2 Wolff J. Das Gesetz der Transformation der Knochen. Berlin: A Hirschwald; 1892
  • 3 Epker B N, Frost H M. Correlations of patterns of bone resorption and formation with physical behaviour of loaded bone. J Dent Res 1965; 44: 33-42.
  • 4 Epker B N, O’Ryan F. Determinants of Class II dentofacial morphology: I: A biomechanical theory. In: Effects of Surgical Intervention on Craniofacial Growth. McNamara Jr J A, Carlson D S, Ribbens K A. (eds). Ann Arbor: Univ. Michigan; 1982: 169-205.
  • 5 Pauwels F. Biomechanics of the Locomotor Apparatus. Berlin: Springer-Verlag; 1986
  • 6 Frost H M. Laws of Bone Structure. Springfield: Charles C Thomas; 1964
  • 7 Frost H M. Bone Modeling and Skeletal Modeling Errors. Springfield: Charles C Thomas; 1973
  • 8 Frost H M. A chondral modeling theory. Calc Tiss Int 1979; 28: 181-200.
  • 9 Frost H M. Mechanical determinants of bone modeling. J Met Bone Dis Rel Res 1983; 4: 217-30.
  • 10 Frost H M. The regional acceleratory phenomenon. A review. Henry Ford Hosp Med J 1983; 31: 3-9.
  • 11 Frost H M. The pathomechanics of osteoporoses. Clin Orthop Rel Res 1985; 200: 198-225.
  • 12 Frost H M. Osteogenesis imperfecta. The setpoint proposal. Clin Orthop Rel Res 1987; 216: 200-17.
  • 13 Frost H M. The mechanostat: A proposed pathogenetic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone and Mineral 1987; 2: 73-85.
  • 14 Frost H M. Vital biomechanics. Proposed general concepts for skeletal adaptations to mechanical usage. Calc Tiss Int. 1987 (in press).
  • 15 Alexander R McN. Optimum strengths for bones liable to fatigue and accidental failure. J Theor Biol 1984; 109: 621-36.
  • 16 Carter D R. Mechanical loading histories and cortical bone remodeling. Calc Tiss Int 1984; 36: S19-S24.
  • 17 Cowin S C. Wolff’s Law of trabecular architecture at remodeling equilibrium. J Biomech Eng 1986; 108: 83-8.
  • 18 Currey J D. The Mechanical Adaptations of Bones. Princeton: Princeton Univ Press; 1984
  • 19 Lanyon L E. Functional strain as a determinant for bone modeling. Calc Tiss Int 1984; 36: S56-S61.
  • 20 Rubin C T. Skeletal strain and the functional significance of bone architecture. Calc Tiss Int 1984; 36: S11-S18.
  • 21 Arnold J S. Focal excessive resorption in aging and senile osteoporosis. In: Osteoporosis. Barzel U S. (ed). New York: Grune and Stratton; 1970: 80-1.
  • 22 Parfitt A M, Matthews H E, Vallanueva A R, Kleerekoper M, Frame B, Rao D S. Relationship between surface, volume and thickness of iliac trabecular bone in aging and disease. J Clin Invest 1983; 72: 1396-409.
  • 23 Courpron P. Bone tissue mechanisms underlying osteoporoses. Ortho Clin N Amer 1981; 12: 513-46.
  • 24 Enlow D H. Principles of Bone Remodeling. Springfield: Charles C Thomas; 1963
  • 25 Jaworski Z F G. Lamellar bone turnover system and its effector organ. Calc Tiss Int 1984; 36: S46-S55.
  • 26 Jee W S S. The Skeletal tissues. In: Histology. ed. 5. Weiss L. (ed). New York: Elsevier-North Holland; 1983: 200-5.
  • 27 Weinmann J P, Sicher H. Bone and Bones. 2nd Ed.. St. Louis: C V Mosby Co; 1955
  • 28 Anderson W A D, Kissane J M. Pathology. 7th ed.. St. Louis: C V Mosby Co; 1977
  • 29 Jaffe H. Metabolic, Degenerative and Inflammatory Diseases of Bones and Joints. Philadelphia: Lea and Febiger; 1972
  • 30 Putschar W G J. General pathology of the musculoskeletal system. In: Handbuch der Allgemeinen Pathologie. Buchner F, Letterer E, Roulet F. (eds). Berlin: Springer-Verlag; 1960: 361-488.
  • 31 Uhthoff H. (ed). Current Concepts in Bone Fragility. Berlin: Springer-Verlag; 1986
  • 32 Parfitt A M. The cellular basis of bone remodeling: The quantum concept reviewed in the light of recent advances in the cell biology of bone. Calc Tiss Int 1984; 36: S38-S45.
  • 33 Recker R R. (ed). Bone Histomorphometry. Techniques and Interpretation. Boca Raton: C R C Press; 1983
  • 34 Reilly D T, Burstein A M. The mechanical properties of cortical bone. J Bone Jt Surg 1974; 56A: 1001-22.
  • 35 Bouvier M. Application of in vivo bone strain measurement techniques to problems of skeletal adaptations. Yearbook of Phys Anthrop 1985; 28: 237-48.
  • 36 Burr D B. Symposium on current theoretical and experimental perspectives on bone remodeling mechanisms: Introductory comments. Yearbook of Phys Anthrop 1985; 28: 207-9.
  • 37 Tschantz P, Rutishauser E. La surcharge mecanique de l’os vivant. Annales d’ Anat et Path 1967; 12: 223-48.
  • 38 Fyhrie D P, Carter D R. A unifying principle relating stress to trabecular bone morphology. J Orthop Res 1986; 4: 304-17.
  • 39 Cochran G, Van B. A Primer of Orthopaedic Biomechanics. Edinburgh: Churchill-Livingstone; 1982
  • 40 Meade J B, Cowin S C, Klawitter J J, Van Buskirk W C, Skinner H R. Bone remodeling due to continuously applied loads. Calc Tiss Int 1984; 36: S25-S30.