Vet Comp Orthop Traumatol 1995; 08(03): 163-169
DOI: 10.1055/s-0038-1632449
Original Research
Schattauer GmbH

Incorporation of Chemically Modified and Radiation-sterilized Cancellous Bone Allografts

S. C. Roe
1   From the Department of Companion Animal and Special Species Medicine, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
,
B. K. Milthorpe
2   Centre for Biomedical Engineering
,
K. Schindhelm
2   Centre for Biomedical Engineering
,
C. R. Howlett
3   School of Pathology, University of New South Wales, Kensington, NSW, Australia
› Author Affiliations
Further Information

Publication History

Received for publication 01 November 1994

Publication Date:
10 February 2018 (online)

Summary

The effect of lipid extraction, partial decalcification, iodoacetate treatment and glutaraldehyde (GA) cross-linking on incorporation of radiation-sterilized cancellous bone allografts was compared to unmodified radiation-sterilized cancellous bone allografts and autogenous cancellous bone grafts in a cortical defect model in sheep tibia. Incorporation of the grafts was compared radiographically and histologically 56 days after implantation. The quantity and depth of extension of fluorescent label into the graft were evaluated from photomicrographs. GA cross-linked allografts were more poorly incorporated and had the least penetration of tetracycline-labelled bone. All other allografts were incorporated similarly to the autografts except that tetracycline- labelled bone was present to a greater depth in the autografts. The minimal differences between allografts and autografts may be explained by a reduction of the immunogenicity of all allografts by freezing and by radiation sterilization. GA cross-linking prevented resorption of bone. Ingrowth may have been inhibited by residual GA.

Chemically modified cancellous bone allografts were implanted in sheep tibia. Their incorporation was compaed to unmodified allografts and autografts using microradiographs and histological evaluation. Glutaraldehyde cross-linked allografts were minimally resorbed and had little bone ingrowth. All other allografts were well incorporated. Bone ingrowth into autografts was more rapid but extent of incorporation after 56 days was similar to allografts.

 
  • REFERENCES

  • 1 Burchardt H. Biology of bone transplantation. Orthop Clin North Am 1987; 18: 187-96.
  • 2 Heiple KG, Goldberg VM, Powell AE. et al Biology of cancellous bone grafts. Orthop Clin North Am 1987; 18: 179-86.
  • 3 Czitrom AA, Axelrod T, Fernandes B. Antigen presenting cells and bone allotransplantation. Clin Orthop Rel Res 1985; 197: 27-31.
  • 4 Horowitz MC, Friedlaender GE. Analysis of the immune response to bone allografts. Trans Orthop Res Soc 1989; 14: 267
  • 5 Stevenson S, Hohn RB, Templeton JW. Effects of tissue antigen matching on the healing of fresh cancellous bone allografts in dogs. Am J Vet Res 1983; 44: 201-06.
  • 6 Friedlaender GE. Immune response to preserved bone allografts in humans. In: Osteochondral Allografts: Banking, Biology and Clinical Applications. Friedlaender GE, Mankin HJ, Sell KW. (eds) Boston: Little, Brown; 1983: 159-64.
  • 7 Powell AE, Bos GD, Goldberg VM. et al Immune responses to bone allografts. In: Osteochondral Allografts: Banking, Biology and Clinical Applications. Friedlaender GE, Mankin HJ, Sell KW. (eds) Boston: Little, Brown; 1983: 141-50.
  • 8 Stevenson S, Fredericks RW, Zart DJ. et al The interaction and effects of freezing and histocompatibility on the incorporation of allogenic cortical grafts in rats. Trans Orthop Res Soc 1989; 14: 269
  • 9 Prolo DJ, Pedrotti PW, Burres KP, Oklund S. Superior osteogenesis in transplanted allogenic canine skull following chemical sterilization. Clin Orthop Rel Res 1982; 168: 230-42.
  • 10 Urist MR. Bone transplants and implants. In: Fundamental and Clinical Bone Physiology. Urist MR. (ed) Philadelphia: Lippincott; 1980: 331-68.
  • 11 Einhorn TA, Lane JM, Burstein AH. et al The healing of segmental bone defects induced by demineralized bone matrix. J Bone Joint Surg 1984; 66 A 274-79.
  • 12 Prolo DJ, Rodrigo JJ. Contemporary bone graft physiology and surgery. Clin Orthop Rel Res 1985; 200: 322-41.
  • 13 Tomford WW, Doppelt SH, Mankin HJ, Friedlaender GE. 1983 Bone bank procedures. Clin Orthop Rel Res 1983; 174: 15-21.
  • 14 Skinner HB. Alternatives in the selection of allograft bone. Orthopaedics 1990; 13: 843-6.
  • 15 Conway B, Tomford WW, Hirsch MS. et al Effects of gamma irradiation on HIV-1 in a bone allograft model. Trans Orthop Res Soc 1990; 15: 225
  • 16 Spire B, Dormond D, Barré-Sinoussi F, Montagne L, Chermann JC. Inactivation of lymphadenopathy-associated virus by heat, gamma rays and ultraviolet light. Lancet 1985; i: 188-9.
  • 17 Withrow SJ, Outlon SA, Suto TL. et al Evaluation of the antiretroviral effect of various methods of sterilizing/preserving corticocancellous bone. Trans Orthop Res Soc 1990; 15: 226
  • 18 Anderson MJ, Keyak JH, Skinner HB. The effects of gamma irradiation on the compressive mechanical properties of human cancellous bone. Trans Combined Meeting Orthop Res Societies of USA, Japan and Canada. 1991: 277
  • 19 Arnoczky SP, Warren RF, Ashlock MA. Replacement of the anterior cruciate ligament using a patellar allograft: An experimental study. J Bone Joint Surg 1986; 68 A 376-85.
  • 20 Indelicato PA, Bittar ES, Prevot TJ. et al Clinical comparison of freeze-dried and fresh frozen patellar tendon allografts for anterior cruciate ligament reconstruction of the knee. Am J Sports Med 1990; 18: 335-42.
  • 21 Jackson DW, Grood ES, Arnoczky SP. et al Cruciate reconstruction using freeze dried anterior cruciate ligament allograft and a ligament augmentation device (LAD): An experimental study in a goat model. Am J Sports Med 1987; 15: 528-38.
  • 22 Jackson DW, Grood ES, Arnoczky SP. et al Freeze dried anterior cruciate ligament allografts: Preliminary studies in a goat model. Am J Sports Med 1987; 15: 295-303.
  • 23 Zoltan DJ, Reinecke C, Indelacato PA. Synthetic and allograft anterior cruciate ligament reconstruction. Clin Sports Med 1988; 7: 773-84.
  • 24 Jackson DW, Windier GE, Simon TM. Intraarticular reaction associated with ethylene oxide-sterilized bone-patella tendonbone allografts in the reconstruction of the anterior cruciate ligament. Am J Sports Med 1990; 18: 1-11.
  • 25 Roberts TS, Drez D, McCarthy W, Paine R. Anterior cruciate ligament reconstruction using freeze-dried, ethylene oxide-sterilized, bone-patellar tendon-bone allografts. Am J Sports Med 1991; 19: 35-41.
  • 26 Feder SM, Butler DL, West HS. et al Irradiated ACL allografts: Changes in mechanical properties over time. Trans Orthop Res Soc 1992; 17: 223
  • 27 Vasseur PB, Rodrigo JJ, Stevenson S. et al Replacement of the anterior cruciate ligament with a bone-ligament-bone anterior cruciate ligament allograft in dogs. Clin Ortho Rel Res 1987; 219: 268-77.
  • 28 Allen PR, Amis AA, Jones MM, Heatley FW. Evaluation of preserved bovine tendon xenografts: A histological, biomechanical and clinical study. Biomaterials 1987; 8: 146-52.
  • 29 Milthorpe BK, Schindhelm K, Howlett CR. et al Treated natural materials a gliding tendon prostheses in a sheep model. Biomaterials 1991; 12: 577-83.
  • 30 Schenk RK, Olah AJ, Herrman W. Preparation of calcified tissues for light microscopy. In: Methods of Calcified Tissue Preparation. Dickson GR. (ed) New York: Elsevier; 1984: 39
  • 31 Capen CC, Weisbrode SE. Hormonal control of mineral metabolism and bone cell activity. In: Bone in Clinical Orthopaedics. Sumner-Smith G. (ed) Philadelphia: Saunders; 1982: 197-252.
  • 32 McMaster WC. A histological assessment of canine anterior cruciate substitution with bovine xenograft. Clin Orthop Rel Res 1985; 196: 196-201.
  • 33 Revell WJ, Heatley FW. Functional restoration of an articular surface using a heterotopic xenograft. Biology of host-implant interactions in the canine patella. Biomaterials 1988; 9: 173-80.
  • 34 Xu B-Z, Pan H-X, Li M-K. et al Study and clinical application of a porcine biomembrane for the repair of dural defects. J Neurosurg 1988; 69: 707-11.
  • 35 Golomb G, Schoen FJ, Smith MS. et al The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Path 1987; 127: 122-30.
  • 36 Weadcock K, Olson RM, Silver FH. Evaluation of collagen crosslinking techniques. Biomat Med Dev Art Org 1983; 84 (11) 293-318.
  • 37 Speer DP, Chvapil M, Eskelson CD, Ulreich J. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mat Res 1980; 14: 753-64.
  • 38 Wiebe D, Megerman J, L’ltalien GJ, Abbott WM. Glutaraldehyde release from vascular prostheses of biologic origin. Surgery 1988; 104: 26-33.
  • 39 Roe SC, Milthorpe BK, Schindhelm K. Collagen cross-linking and resorption: Effect of glutaraldehyde concentration. Artificial Organs 1990; 14: 443-8.
  • 40 Hey RB, Lachs CM, Raxworthy MJ, Wood EJ. Crosslinked fibrous collagen for use as a dermal implant: Control of cytottoxic effects of glutaraldehyde and dimethylsuberimidate, Biotech Appl Biochem. 1990; 12: 85-93.
  • 41 Bos GD, Goldberg VM, Powell AE. et al The effect of histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg 1983; 65 A 89-96.
  • 42 DeLuca JV, Ianelli C, Freidlaender GE, Baron R. A comparative histomorphometric study of bone remodeling in human paired cancellous allografts and autografts. Trans Orthop Res Soc 1987; 12: 356
  • 43 Goldberg VM, Powell A, Schaffer JW. et al Bone grafting: Role of histocompatibility in transplantation. J Orthop Res 1985; 3: 389-404.
  • 44 Wilson JW, Rhinelander FW, Stewart CL. Vascularization of cancellous chip bone grafts. Am J Vet Res 1985; 46: 1691-9.
  • 45 Pellet S, Strong DM, Temesi A, Matthews JG. Effects of irradiation sterilization on frozen corticocancellous bone allograft incorporation and immunogenicity. In: Osteochondral Allografts - Biology, Banking and Clinical Applications. Freidlaender GE, Mankin HJ, Sell KW. (eds) Boston: Little, Brown; 1983: 353-62.
  • 46 Urist MR, Hernandez A. Excitation transfer in bone. Arch Surg 1974; 109: 486-93.
  • 47 Wientroub S, Reddi AH. Influence of irradiation on the osteoinductive potential of demineralized bone matrix. Calcif Tissue Int 1988; 42 (04) 255-60.
  • 48 Ferraro SP, Moore-Ferraro SY, Gendler E, Moore TM. Bacteriocidal gamma irradiation enhances rather than impairs osteoinduction by solid demineralized matrix in the rat. Trans Combined Meeting Ortho Res Societies of USA, Japan and Canada. 1991: 288