Nervenheilkunde 2006; 25(04): 237-243
DOI: 10.1055/s-0038-1626460
Originaler Artikel
Schattauer GmbH

Aktuelles zu den spinalen Muskelatrophien

The current knowledge in spinal muscular atrophy
R. Korinthenberg
1   Klinik für Neuropädiatrie und Muskelerkrankungen, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg/Breisgau (Ärztlicher Direktor: Prof. Dr. R. Korinthenberg)
› Author Affiliations
Further Information

Publication History

Publication Date:
19 January 2018 (online)

Zusammenfassung

80 bis 90% aller spinalen Muskelatrophien (SMA) entfallen auf den autosomal-rezessiven Typ des Kindes- und Jugendalters, dessen Gen (SMN-Gen) auf Chromosom 5 identifiziert werden konnte. Auf Grund einer Duplikation dieses Chromosomenabschnittes liegt das Gen in zwei Kopien vor (SMN1 und SMN2), die sich lediglich in fünf Nukleotiden unterscheiden. Diese Unterschiede führen jedoch zu unterschiedlichem mRNA-Spleißen, indem nur das SMN1-Gen zu einem stabilen Genprodukt führt (SMN-Protein), während das Genprodukt von SMN2 instabil ist. Heterozygotes Fehlen von SMN1 führt zur SMA, während die Zahl der dennoch vorhandenen SMN2-Kopien den Schweregrad der Erkrankung bestimmt (SMA TypI bis III). Das SMN-Protein ist in allen Zellen an der Regulation der mRNA Synthese beteiligt. In den Motoneuronen scheint es zusätzlich eine besondere Rolle bei Wachstum und Differenzierung der Axone zu haben. Aktuelle experimentelle Therapieansätze zielen darauf ab, das Spleißverhalten des SMN2-Gens zu verbessern, sodass eine erhöhte Konzentration von funktionellem SMN-Protein resultiert. Erste klinische Studien sind in Vorbereitung.

Summary

80 to 90% of all spinal muscular atrophies (SMA) belong to the autosomal-recessive proximal SMA of childhood and adolescence. The gene of this disease (SMN-gene) has been identified on chromosome 5. The SMN-gene is located in a duplicated chromosomal area and exists in two copies, SMN1 and SMN2, which differ in only five nucleotides. However, this difference leads to different mRNA splicing. Only SMN1 results in a stable gene product (SMN-protein), whereas the product of SMN2 is unstable.A heterozygous loss of functional SMN1 leads to clinical SMA, whereas the number of existing SMN2 copies determines the severity of the disease (SMA types I, II and III). SMN protein playsa role in the regulation of mRNA synthesis of all cell types. In motor neurons it is additionally active in the regulation of axonal growth and differentiation. Experimental therapeutic research has been successful to elevate the SMN concentration by improving mRNA splicing of the SMN2 gene by different drugs. First clinical trials to investigate this effect in humans and its impact on strength and functioning are being prepared.

 
  • Literatur

  • 1 Bach JR, Niranjan V, Weaver B. Spinal muscular atrophy type 1: A noninvasive respiratory management approach. Chest 2000; 117: 1100-05.
  • 2 Birnkrant DJ, Pope JF, Martin JE. et al. Treatment of typeI spinal muscular atrophy with noninvasive ventilation and gastrostomy feeding. Pediatr Pulmonol 1998; 18: 407-10.
  • 3 Brichta L, Hofmann Y, Hahnen E. et al. Valproic acid increases the SMN2 protein level: a wellknown drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 2003; 12: 2481-9.
  • 4 Chang JG, Hsieh-Li HM, Jong YJ. et al. Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 2001; 98: 9808-13.
  • 5 Feldkötter M, Schwarzer V, Wirth R. et al. Quantitative analyses of SMN1 and SMN2 based on realtime light-cycler PCR: a fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002; 70: 358-68.
  • 6 Grohmann K, Varon R, Stolz P. et al. Infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1). Ann Neurol 2003; 54: 719-24.
  • 7 Jablonka S, Sendtner M. Molecular and cellular basis of spinal muscular atrophy. ALS 2003; 04: 144-9.
  • 8 Kilani M, Mercuri E, Main M. et al. Pilot trial of albuterol in spinal muscular atrophy. Neurology 2002; 59: 609-10.
  • 9 Korinthenberg R, Sauer M, Ketelsen UP. et al. Congenital axonal neuropathy caused by deletions in the spinal muscular atrophy region. Ann Neurol 1997; 42: 364-8.
  • 10 Lefebvre S, Bürglen L, Reboullet S. et al. Identification and characterization of spinal muscular atrophy-determining gene. Cell 1995; 80: 155-65.
  • 11 Mellies U, Dohna-Schwake C, Stehling F. et al. Sleep disordered breathing in spinal muscular atrophy and the impact of non-invasive ventilation. Neuromuscul Disord 2004; 14: 797-803.
  • 12 Merlini L, Solari A, Vita G. et al. Role of gabapentin in spinal muscular atrophy: results of a multicenter, randomized italian study. J Child Neurol 2003; 18: 537-41.
  • 13 Rossoll W, Jablonka S, Andreassi C. et al. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of ß-actin mRNA in growth cones of motoneurons. J Cell Biol 2003; 163: 801-12.
  • 14 Rudnik-Schöneborn S, Morgan G, Röhrig D. et al. Autosomal recessive proximal spinal muscular atrophy in 101 sibs out of 48 families: clinical picture, influence of gender and genetic implications. Am J Med Genet 1994; 51: 70-6.
  • 15 Rudnik-Schöneborn S, Forkert R, Hahnen E. et al. Clinical spectrum and diagnostic criteria of infantile spinal muscular atrophy: further delineation on the basis of SMN gene deletion findings. Neuropediatrics 1996; 27: 8-15.
  • 16 Sumner CJ, Huynh TN, Markowitz JA. et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 2003; 54: 647-54.
  • 17 Swoboda KJ, Prior TW, Scott CB. et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol 2005; 57: 704-12.
  • 18 Tzeng AC, Cheng J, Fryczinski H. et al. A study of thyrotropin-releasing hormone for the treatment of spinal muscular atrophy: a preliminary report. Am J Physiother Rehabil 2000; 79: 435-40.
  • 19 Zerres K, Rudnik-Schöneborn S. Natural history in proximal spinal muscular atrophy (SMA): clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol 1995; 52: 518-23.
  • 20 Zerres K, Rudnik-Schöneborn S, Dubowitz V. et al. Guidelines for symptomatic therapy in spinal muscular atrophy SMA. Acta Cardiomiologica 1995; 07: 61-6.
  • 21 Zerres K, Korinthenberg R, Rudnik-Schöneborn S. Spinale MuskelatrophienRudnik-Schöneborn S. In: Pongratz D, Zierz S. (Hrsg) Neuromuskuläre Erkrankungen. Diagnostik, interdisziplinäre Therapie und Selbsthilfe. Köln: Deutscher Ärzteverlag; 2003