Tierarztl Prax Ausg G Grosstiere Nutztiere 2009; 37(02): 103-112
DOI: 10.1055/s-0038-1624054
Schwein
Schattauer GmbH

Prüfung der Schutzwirkung eines trivalenten Influenzavirus-Inaktivatimpfstoffs für Schweine in Infektionsversuchen mit aktuellen Feld stämmen der Subtypen H1N1, H3N2 und H1N2

Proof of efficacy of a trivalent inactivated swine flu vaccine by challenge trials against field strains of subtypes H1N1, H3N2, and H1N2
R. Dürrwald
1   Bereich Forschung und Entwicklung (Leiter: Prof. Dr. H.-J. Selbitz), IDT Biologika GmbH, Dessau-Roßlau
,
V. Herwig
1   Bereich Forschung und Entwicklung (Leiter: Prof. Dr. H.-J. Selbitz), IDT Biologika GmbH, Dessau-Roßlau
,
H.-J. Selbitz
1   Bereich Forschung und Entwicklung (Leiter: Prof. Dr. H.-J. Selbitz), IDT Biologika GmbH, Dessau-Roßlau
› Author Affiliations
Further Information

Publication History

Eingegangen: 14 October 2007

akzeptiert: 10 March 2008

Publication Date:
10 January 2018 (online)

Zusammenfassung:

Gegenstand und Ziel: Die Integration eines humanen H1-Hämagglutinins mit fehlender Kreuzreaktivität zu “Avian-like-” und “Classical-swine”-H1N1-Stämmen über ein natürliches Reassortment in europäische porzine Influenzaviren hat die bisher relativ stabile epidemiologische Situation der Schweineinfluenza gravierend verändert. Grund dafür ist die entstandene Lücke in der Immunprophylaxe, die durch die verfügbaren H1N1+H3N2-Impfstoffe nicht mehr geschlossen werden kann und somit die Einbeziehung des neuen Subtyps H1N2 als Impfantigen in Impfstoffe erfordert. Ziel der Untersuchungen war, in Vorbereitung der Entwicklungsphase eines neuen, trivalenten Impfstoffes zu prüfen, ob solch ein Impfstoff vor Belastungsinfektionen mit Stämmen aller drei Subtypen schützt. Material und Methoden: Aktuelle Influenzavirusstämme der Subtypen H1N1, H3N2 und H1N2, die in Gegenden mit hoher Schweinedichte isoliert worden waren, wurden als Impfstämme selektiert, in Zellkulturen produziert, inaktiviert und daraus ein Labormuster mit einem verträglichen Adjuvans hergestellt. Schweine wurden immunisiert und aerogenen Belastungsinfektionen mit aktuellen Feldisolaten ausgesetzt. Ergebnisse: Die Impfung induzierte bereits 7 Tage nach Abschluss der Grundimmunisierung hämagglutinationshemmende und neutralisierende Antikörper. Nach experimenteller Infektion waren immunisierte Schweine vollständig geschützt, zeigten im Vergleich zu nicht immunisierten Kontrolltieren keine oder mildere Symptome sowie eine signifikant geringere Viruslast in den Lungen und schieden signifikant weniger Virus aus. Schlussfolgerungen: Die Entwicklung eines neuen, trivalenten Influenzavirusimpfstoffs für Schweine ist möglich, der effektiv gegenüber allen drei Subtypen einschließlich der neuen Antigenkombination H1N2 schützt.

Summary:

Subject matter and objective: The introduction via natural reassortment of a human H1 haemagglutinin that lacks cross-reactivity to avian and classical porcine H1N1 viruses into the European swine influenza A virus population has remarkably changed the otherwise epidemiologically very stable situation of swine flu. A gap therefore arose in the control of swine influenza because of the failure of inactivated H1N1 + H3N2 vaccines to provide protection against the newly emerged H1N2 subtype. The epidemiological situation forced the introduction of the new subtype into swine flu vaccines. Aim of the investigations was to prove the efficacy of a newly developed trivalent swine flu vaccine by challenges with field strains of all three subtypes. Materials and methods: Three virus strains of subtypes H1N1, H3N2, and H1N2 originally isolated in regions with dense swine populations were chosen as vaccine strains; these were produced in cell culture, inactivated and finally blended into an experimental vaccine. Pigs were vaccinated and submitted to a challenge infection once primary immunization was complete. An aerosol-mediated challenge procedure was applied to investigate efficacy of the vaccine by using current field strains of each subtype. Results: Vaccinated pigs displayed neutralizing and haemagglutination inhibiting antibodies as early as 7 days after the second vaccination, which is the onset of immunity. Vaccinated animals had no clinical symptoms after infection, whereas unvaccinated animals exhibited fever and dyspnoea especially after H3N2 and H1N2 infections. The viral load in the lungs was significantly lower in vaccinated pigs compared to unvaccinated animals. Vaccinated pigs shed significantly lower amounts of virus in comparison to unvaccinated pigs. Conclusions: The development of a new trivalent swine flu vaccine that provides protection against all three subtypes, including the new subtype H1N2 is feasible and improves safety through the use of a nonpyrogenic adjuvant.

 
  • Literatur

  • 1 Bachmann PA. Swine Influenza Virus. In: Virus Infections of Vertebrates. Horzinek C. ed., volume 2, Virus Infections of Porcines. Pensaert MB. ed. Amsterdam: Elsevier; 1989: 193-207.
  • 2 Markowska-Daniel IM, Kowalczyk A, Pejsak Z. Swine influenza virus as reason of serious reproductive disorders. In: Nielsen JP, Jorsal SE. eds Proceedings of the 19th IPVS Congress. 2006. Jul 16–19; Copenhagen, Denmark: Volume II: p. 121.
  • 3 Kawaoka Y, Cox NJ, Haller O, Hongo S, Kaverin N, Klenk H-D. et al. Family Orthomyxoviridae . In: Virus Taxonomy. Classification and Nomenclature of Viruses. Eighth Report of the International Committee on the Taxonomy of Viruses. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. eds. Amsterdam: Elsevier; 2005: 681-693.
  • 4 Rott R. Influenza, eine besondere Form einer Zoonose. Berl Münch Tierärztl Wschr 1997; 110: 241-246.
  • 5 Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Reviews 1992; 56: 152-179.
  • 6 Fouchier RAM, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D. et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 2005; 79: 2814-2822.
  • 7 Shope RE. Swine influenza. III. Filtration experiments and etiology. J Exp Med 1931; 54: 373-385.
  • 8 Easterday BC. Swine influenza: historical perspectives. In: Martelli P, Cavirani S, Lavazza A. eds. Proceedings of the 4th Int Symposium on Emerging and Re-emerging Pig diseases. 2003 Jun 29 – Jul 2; Rome, Italy: p. 241-244.
  • 9 Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerg Infect Dis 2006; 12: 15-22.
  • 10 Nardelli L, Pascucci S, Gualandi GL, Loda P. Outbreaks of classical swine influenza in Italy in 1976. Zentralbl Veterinärmed B 1978; 25: 853-857.
  • 11 Brown IH. The epidemiology and evolution of influenza viruses in pigs. Vet Microbiol 2000; 74: 29-46.
  • 12 Pensaert M, Ottis K, Vandeputte J, Kaplan MM, Bachmann PA. Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential importance for man. Bull World Health Org 1981; 59: 75-78.
  • 13 Castrucci MR, Donatelli I, Sidoli L, Barigazzi G, Kawaoka Y, Webster RG. Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 1993; 193: 503-506.
  • 14 Campitelli L, Donatelli I, Foni E, Castrucci MR, Fabiani C, Kawaoka Y. et al. Continued evolution of H1N1 and H3N2 influenza viruses in pigs in Italy. Virology 1997; 232: 310-318.
  • 15 Brown IH, Chakraverty P, Harris PA, Alexander DJ. Disease outbreaks in pigs in Great Britain due to an influenza A virus of H1N2 subtype. Vet Rec 1995; 136: 328-329.
  • 16 Zell R, Motzke S, Krumbholz A, Wutzler P, Herwig V, Dürrwald R. Novel reassortant of swine influenza H1N2 virus in Germany. J Gen Virol 2008; 89: 271-276.
  • 17 Brown IH, Harris PA, McCauley JW, Alexander DJ. Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol 1998; 79: 2947-2955.
  • 18 Van Reeth K, Brown IH, Pensaert M. Isolations of H1N2 influenza A virus from pigs in Belgium. Vet Rec 2000; 146: 588-589.
  • 19 Marozin S, Gregory V, Cameron K, Bennett M, Valette M, Aymard M. et al. Antigenic and genetic diversity among swine influenza A H1N1 and H1N2 viruses in Europe. J Gen Virol 2002; 83: 735-745.
  • 20 Schrader C, Süss J. Genetic characterization of a porcine H1N2 influenza virus strain isolated in Germany. Intervirology 2003; 46: 66-70.
  • 21 Lang Ch, Sipos W, Dürrwald R, Herwig V, Sommerfeld-Stur I, Schuh M. et al. Abklärung des Vorkommens des Schweineinfluenzavirus A-Subtyps H1N2 in österreichischen Betrieben. Wien Tierärztl Mschr 2004; 91: 297-308.
  • 22 Maldonado J, Van Reeth K, Riera P, Sitjà M, Saubi N, Espuña E. et al. Evidence of the concurrent circulation of H1N2, H1N1 and H3N2 influenza A viruses in densely populated pig areas in Spain. Vet J 2006; 172: 377-381.
  • 23 Hjulsager CK, Bragstad K, Bøtner A, Nielsen EO, Vigre H, Enøe C. et al. New swine influenza A H1N2 reassortment found in Danish swine. In: Nielsen JP, Jorsal SE. eds. Proceedings of the 19th IPVS Congress. 2006. Jul 16–19; Copenhagen, Denmark: Volume I: p. 265.
  • 24 Franck N, Queguiner S, Gorin S, Eveno E, Fablet C, Madec F, Kuntz-Simon G. Molecular epidemiology of swine influenza virus in France: identification of novel H1N1 reassortants. In: Markowska-Daniel I. ed. Proceedings of the 5th Int Symposium on Emerging and Re-emerging Pig diseases. 2007. Jun 24–27; Krakow, Poland, Krakow: PHU Kopiorama; 2007. p. 250.
  • 25 Van Reeth K, Brown IH, Dürrwald R, Foni E, Labarque G, Lenihan P. et al. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002–2003. Influenza and other respiratory viruses 2008; 2: 99-105.
  • 26 Reid AH, Fanning TG, Hultin JV, Taubenberger JK. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc Natl Acad Sci USA 1999; 96: 1651-1656.
  • 27 Kendal AP, Noble GR, Shekel JJ, Dowdle WR. Antigenic similarity of influenza A (H1N1) viruses from epidemics in 1977–78 to “Scandinavian” strains isolated in epidemics of 1950–1951. Virology 1978; 89: 632-636.
  • 28 Dürrwald R, Herwig V, Schlegel M, Rüdiger H, Selbitz H-J. Bivalent swine flu vaccines commercially available in Germany do not protect against the newly emerged H1N2 subtype of swine influenza A virus. In: Markowska-Daniel I. ed. Proceedings of the 5th Int Symposium on Emerging and Reemerging Pig diseases. 2007 Jun 24–27; Krakow, Poland, Krakow: PHU Kopiorama; 2007. p. 266.
  • 29 Van Reeth K, Van Gucht S, Pensaert M. Investigations of the efficacy of European H1N1– and H3N2-based swine influenza vaccines against the novel H1N2 subtype. Vet Rec 2003; 153: 9-13.
  • 30 Van Reeth K, Brown I, Essen S, Pensaert M. Genetic relationships, serological cross-reaction and cross-protection between H1N2 and other influenza A virus subtypes endemic in European pigs. Virus Res 2004; 103: 115-124.
  • 31 Mayr A, Bachmann PA, Bibrack B, Wittmann G. Virologische Arbeitsmethoden. II. Serologie. Jena: Fischer; 1997
  • 32 Mayr A, Bachmann PA, Bibrack B, Wittmann G. Virologische Arbeitsmethoden. I. Zellkultur – Bebrütete Hühnereier – Versuchstiere. Jena: Fischer; 1994
  • 33 Murphy BR, Clements ML. The systemic and mucosal immune response of humans to influenza A virus. Curr Top Microbiol Immunol 1989; 146: 107-116.
  • 34 Treanor JJ, Tierney EL, Zebedee SL, Lamb RA, Murphy BR. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J Virol 1990; 64: 1375-1377.
  • 35 Porcine influenza vaccine (inactivated). In: European Pharmacopoeia. European Directorate for the Quality of Medicines 01/2005: 0963.
  • 36 Porcine influenza vaccine (inactivated). In: European Pharmacopoeia. European Directorate for the Quality of Medicines 1997: 0963.
  • 37 de Jong JC, van Nieuwstadt AP, Kimman TG, Loeffen WLA, Bestebroer TM, Bijlsma K. et al. Antigenic drift in swine influenza H3 haemagglutinins with implications for vaccination policy. Vaccine 1999; 17: 1321-1328.
  • 38 de Jong JC, Heinen PP, Loeffen WLA, van Nieuwstadt AP, Claas ECJ, Bestebroer TM. et al. Antigenic and molecular heterogeneity in recent swine influenza A (H1N1) virus isolates with possible implications for vaccination policy. Vaccine 2001; 19: 4452-4464.
  • 39 de Jong JC, Smith DJ, Lapedes AS, Donatelli I, Campitelli L, Barigazzi G. et al. Antigenic and genetic evolution of swine influenza A (H3N2) viruses in Europe. J Virol 2007; 81: 4315-4322.