Tierarztl Prax Ausg G Grosstiere Nutztiere 2010; 38(01): 37-46
DOI: 10.1055/s-0038-1623964
Originalartikel
Schattauer GmbH

Einfluss nichtsteroidaler Antiphlogistika auf equine mesenchymale Stammzellen in vitro

Investigation on the influence of NSAID on equine mesenchymal stem cells
S. Arnhold
1   Institut für Veterinär-Anatomie, -Histologie und -Embryologie (Prof. Dr. Dr. S. Arnhold), Justus-Liebig-Universität Gießen
,
M. Müller
2   Institut I für Anatomie (Prof. Dr. K. Addicks) der Universität zu Köln
,
O. Raabe
1   Institut für Veterinär-Anatomie, -Histologie und -Embryologie (Prof. Dr. Dr. S. Arnhold), Justus-Liebig-Universität Gießen
,
K. Addicks
2   Institut I für Anatomie (Prof. Dr. K. Addicks) der Universität zu Köln
,
S. Wenisch
1   Institut für Veterinär-Anatomie, -Histologie und -Embryologie (Prof. Dr. Dr. S. Arnhold), Justus-Liebig-Universität Gießen
› Author Affiliations
Further Information

Publication History

Eingegangen: 15 December 2008

Akzeptiert: 10 June 2009

Publication Date:
05 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: Für die Therapie von orthopädischen Erkrankungen wie Sehnenläsionen werden mesenchymale Stammzellen therapeutisch genutzt. Da den Pferden vor der Stammzelltherapie routinemäßig nichtsteroidale Antiphlogistika (NSAID) verabreicht werden, war es das Ziel dieser Studie zu untersuchen, wie sich diese Substanzen unter Zellkulturbedingungen auf die mesenchymalen Stammzellen hinsichtlich Vitalität, Proliferation und Differenzierung auswirken. Mate - rial und Methoden: Nach Inkubation der mesenchymalen Stamm - zellen (MSC) mit den NSAID Flunixin, Phenylbutazon und Meloxicam wurden Vitalität, Proliferationsrate und Wachstum der MSC geprüft. Durch Kultivierung der MSC in Medien für die adipogene, chondrogene und osteogene Differenzierung wurde mittels histologischer Nachweismethoden auch der Einfluss der NSAID auf die Differenzierungskapazität beurteilt. Ergebnisse: Von den in therapeutisch relevanten Konzentrationen eingesetzten NSAID konnte ausschließlich Flunixin eine Verlängerung der Generationszeit und damit eine Verminderung der Proliferationsrate induzieren. Darüber hinaus wurde insbesondere durch Flunixin und Metacam das osteogene Differenzierungspotenzial inhibiert, während die adipogene und die chondrogene Differenzierung durch alle drei NSAIDs unbeeinflusst blieb.Schlussfolgerung: Die hier verwendeten NSAID haben abgesehen von Flunixin keinen negativen Einfluss auf Vitalität und Proliferation. Die osteogene Differenzierung der Stammzellen unterliegt großen Schwankungen, was frühere Daten bestätigt. Klinische Relevanz: Die Auswahl der in der Pferdepraxis üblicherweise verwendeten NSAID muss in Zusammenhang mit einer Stammzelltherapie kritisch hinterfragt werden. Von einer Vorbehandlung mit Flunixin ist eher abzusehen.

Summary

Summary Objective: Within the past few years, bone marrow derived mesenchymal stem cells have been used for tissue engineering applications in the treatment of orthopaedic diseases such as lesions of the tendons. As affected animals are routinely pretreated with nonsteroidal antiphlogistics in order to prevent inflammation and pain, the aim of this study was to investigate the influence of NSAID on equnie mesenchymal stem cells (eMSC) in vitro in regards to cell viability, proliferation and differentiation. Materials and methods: After incubation of eMSC with the NSAIDs Flunixine, Phenylbutazone and Meloxicam, cell vitality, cell proliferation and growth characteristics were analysed. By cultivating eMSC in specific induction media for the adipogenic, chondrogenic and osteogenic differentiation and using histological staining methods, the influence of NSAID on the differentiation potential could be evaluated. Results: Of the three NSAIDs included in this study in therapeutically relevant concentrations, only Flunixine exerted an increase of the generation time and thus an inhibition on cell proliferation. Furthermore, Flunixine and Metacam induced an inhibitory effect on the osteogenic differentiation potential, while the adipogenic and chondrogenic differentiation potential remained unaltered by all three NSAIDs. Conclusion: Apart from Flunixine, the tested NSAIDs have no noteworthy influence on cell vitality and proliferation. The osteogenic differentiation of stem cells is liable to high variations, which has also been confirmed with previous data. Clinical relevance: The selection of NSAID used in the equine practice in conjunction with an eMSC treatment has to be critically questioned. A pretreatment with Flunixine should be avoided.

 
  • Literatur

  • 1 Arnhold S, Klein H, Klinz FJ, Absenger Y, Schmidt A, Schinkothe T, Brixius K, Kozlowski J, Desai B, Bloch W, Addicks K. Human bone marrow stroma cells display certain neural characteristics and integrate in the subventricular compartment after injection into the liquor system. Eur J Cell Biol 2006; 85: 551-565.
  • 2 Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF. Isolation and characterization of bone marrow-derived equine mesenchymal stem cells. Am J Vet Res 2007; 6: 1095-1105.
  • 3 Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U. Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 2004; 4: 4251-4255.
  • 4 Beck A, Krischak G, Sorg T, Augat P, Farker K, Merkel U, Kinzl L, Claes L. Influence of diclofenac (group of nonsteroidal anti-inflammatory drugs) on fracture healing. Arch Orthop Trauma Surg 2003; 123: 327-332.
  • 5 Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B, Day R, Ferraz MB, Hawkey CJ, Hochberg MC, Kvien TK, Schnitzer TJ. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 2000; 343: 1520-1528.
  • 6 Brehm W. Stammzellen, Stammzelltherapie – Begriffserklärungen, Zusammenhänge und mögliche klinische Anwendungen. Pferdeheilk 2006; 22: 259-267.
  • 7 Chang JK, Li CJ, Wu SC, Yeh CH, Chen CH, Fu YC, Wang GJ, Ho ML. Effects of anti-inflammatory drugs on proliferation, cytotoxicity and osteogenesis in bone marrow mesenchymal stem cells. Biochem Pharmacol 2007; 74: 1371-1382.
  • 8 Chang JK, Wang GJ, Tsai ST, Ho ML. Nonsteroidal anti-inflammatory drug effects on osteoblastic cell cycle, cytotoxicity, and cell death. Connect Tissue Res 2005; 46: 200-210.
  • 9 Cohen DB, Kawamura S, Ehteshami JR, Rodeo SA. Indomethacin and celecoxib impair rotator cuff tendon-to-bone healing. Am J Sports Med 2006; 34: 362-369.
  • 10 Crovace A, Lacitignola L, De Siena R, Rossi G, Francioso E. Cell therapy for tendon repair in horses: an experimental study. Vet Res Commun 2007; 31 Suppl 1: 281-3.
  • 11 Crovace A, Lacitignola L, Francioso E, Rossi G. Histology and immunohistochemistry study of ovine tendon grafted with cBMSCs and BMMNCs after collagenase-induced tendinitis. Vet Comp Orthop Traumatol 2008; 21: 329-336.
  • 12 Csaki C, Matis U, Mobasheri A, Ye H, Shakibaei M. Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study. Histochem Cell Biol 2007; 128: 507-520.
  • 13 Derfoul A, Perkins GL, Hall DJ, Tuan RS. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 2006; 24: 1487-1495.
  • 14 Dieppe PA, Ebrahim S, Martin RM, Juni P. Lessons from the withdrawal of rofecoxib. BMJ 2004; 329: 867-868.
  • 15 Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279: 1528-1530.
  • 16 Forslund C, Bylander B, Aspenberg P. Indomethacin and celecoxib improve tendon healing in rats. Acta Orthop Scand 2003; 74: 465-469.
  • 17 Fortier LA, Nixon AJ, Williams J, Cable CS. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res 1998; 59: 1182-1187.
  • 18 Gerstenfeld LC, Thiede M, Seibert K, Mielke C, Phippard D, Svagr B, Cullinane D, Einhorn TA. Differential inhibition of fracture healing by non-selective and cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs. J Orthop Res 2003; 21: 670-675.
  • 19 Giovannini S, Brehm W, Mainil-Varlet P, Nesic D. Multilineage differentiation potential of equine blood-derived fibroblast-like cells. Differentiation 2008; 76: 118-129.
  • 20 Goodrich LR, Nixon AJ. Medical treatment of osteoarthritis in the horse – a review. Vet J 2006; 171: 51-69.
  • 21 Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow- derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996; 166: 585-592.
  • 22 Hombach-Klonisch S, Panigrahi S, Rashedi I, Seifert A, Alberti E, Pocar P, Kurpisz M, Schulze-Osthoff K, Mackiewicz A, Los M. Adult stem cells and their trans-differentiation potential –perspectives and therapeutic applications. J Mol Med 2008; 86: 1301-1314.
  • 23 Jones R, Rubin G, Berenbaum F, Scheiman J. Gastrointestinal and cardiovascular risks of nonsteroidal anti-inflammatory drugs. Am J Med 2008; 121: 464-474.
  • 24 Kassem M. Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 2004; 6: 369-374.
  • 25 Kean WF, Buchanan WW. The use of NSAIDs in rheumatic disorders 2005: a global perspective. Inflammopharmacology 2005; 13: 343-370.
  • 26 Kellinsalmi M, Parikka V, Risteli J, Hentunen T, Leskela HV, Lehtonen S, Selander K, Vaananen K, Lehenkari P. Inhibition of cyclooxygenase-2 downregulates osteoclast and osteoblast differentiation and favours adipocyte formation in vitro. Eur J Pharmacol 2007; 572: 102-110.
  • 27 Koch TG, Heerkens T, Thomsen PD, Betts DH. Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol 2007; 7: 26.
  • 28 Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP. Equine peripheral blood-derived progenitors in comparison to bone marrowderived mesenchymal stem cells. Stem Cells 2006; 24: 1613-1619.
  • 29 Lees P, Higgins AJ. Clinical pharmacology and therapeutic uses of non-steroidal anti-inflammatory drugs in the horse. Equine Vet J 1985; 17: 83-96.
  • 30 Nakamura H, Masuko K, Yudoh K, Kato T, Nishioka K. Effects of celecoxib on human chondrocytes – enhanced production of chemokines. Clin Exp Rheumatol 2007; 25: 11-16.
  • 31 Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001; 98: 10344-10349.
  • 32 Ouyang HW, Goh JC, Lee EH. Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med 2004; 32: 321-327.
  • 33 Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136: 42-60.
  • 34 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147.
  • 35 Richardson LE, Dudhia J, Clegg PD, Smith R. Stem cells in veterinary medicine – attempts at regenerating equine tendon after injury. Trends Biotechnol 2007; 25: 409-416.
  • 36 Saito S, Sawai K, Minamihashi A, Ugai H, Murata T, Yokoyama KK. Derivation, maintenance, and induction of the differentiation in vitro of equine embryonic stem cells. Methods Mol Biol 2006; 329: 59-79.
  • 37 Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000; 164: 247-256.
  • 38 Smith RK. Mesenchymal stem cell therapy for equine tendinopathy. Disabil Rehabil 2008; 30: 1752-1758.
  • 39 Smith RK, Korda M, Blunn GW, Goodship AE. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 2003; 35: 99-102.
  • 40 Stashak TS. Management of lacerations and avulsion injuries of the foot and pastern region and hoof wall cracks. Vet Clin North Am Equine Pract 1989; 5: 195-220.
  • 41 Tanaka H, Murphy CL, Murphy C, Kimura M, Kawai S, Polak JM. Chondrogenic differentiation of murine embryonic stem cells: effects of culture conditions and dexamethasone. J Cell Biochem 2004; 93: 454-462.
  • 42 Thomas J, Taylor D, Crowell R, Assor D. The effect of indomethacin on Achilles tendon healing in rabbits. Clin Orthop Relat Res 1991; 272: 308-311.
  • 43 Trubiani O, Di Primio R, Traini T, Pizzicannella J, Scarano A, Piattelli A, Caputi S. Morphological and cytofluorimetric analysis of adult mesenchymal stem cells expanded ex vivo from periodontal ligament. Int J Immunopathol Pharmacol 2005; 18: 213-221.
  • 44 Walt R, Katschinski B, Logan R, Ashley J, Langman M. Rising frequency of ulcer perforation in elderly people in the United Kingdom. Lancet 1986; 1: 489-492.
  • 45 Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007; 327: 449-462.