Nuklearmedizin 2005; 44(01): 20-28
DOI: 10.1055/s-0038-1623924
Original Article
Schattauer GmbH

Attenuation correction of SPECT images based on separately performed CT

Effect on the measurement of regional uptake valuesSchwächungskorrektur von SPECT mit separaten CT-DatenEffekte auf die regionale Traceranreicherung
W. Römer
1   Clinic of Nuclear Medicine (Prof. Dr. T. Kuwert), University of Erlangen/Nürnberg, Erlangen, Germany
,
E. Fiedler
1   Clinic of Nuclear Medicine (Prof. Dr. T. Kuwert), University of Erlangen/Nürnberg, Erlangen, Germany
,
M. Pavel
2   Internal Medicine I (Prof. Dr. E. G. Hahn), University of Erlangen/Nürnberg, Erlangen, Germany
,
A. Pfahlberg
3   Department of Medical Informatics, Biometry and Epidemiology (Prof. Dr. O. Gefeller), University of Erlangen/Nürnberg, Erlangen, Germany
,
T. Hothorn
3   Department of Medical Informatics, Biometry and Epidemiology (Prof. Dr. O. Gefeller), University of Erlangen/Nürnberg, Erlangen, Germany
,
H. Herzog
4   Institute of Medicine (Prof. Dr. K. Zilles), Forschungszentrum Jülich GmbH, Jülich, Germany
,
W. Bautz
5   Institute of Diagnostic Radiology (Prof. Dr. W. Bautz), University of Erlangen/Nürnberg, Erlangen, Germany
,
T. Kuwert
1   Clinic of Nuclear Medicine (Prof. Dr. T. Kuwert), University of Erlangen/Nürnberg, Erlangen, Germany
› Author Affiliations
Further Information

Publication History

Received: 03 March 2004

08 September 2004

Publication Date:
11 January 2018 (online)

Summary

Aim: A new software approach uses separately acquired CT images for attenuation correction after retrospective fusion with the SPECT data. This study evaluates the effect of this CT-based attenuation correction on indium- 111-pentetreotide-SPECT images. Methods: Indium- 111-pentetreotide-SPECT imaging using a dual-head gamma camera e.cam (Siemens Medical Solutions, Erlangen, Germany) as well as separate spiral computed tomography (CT) was performed in 13 patients. After fusion of SPECT and CT data, the bilinear attenuation coefficients were calculated for each pixel in the CT image volume using their Hounsfield unit values and attenuation- corrected images were reconstructed iteratively (OSEM 2D). Regions of interest (ROIs) were drawn on 24 suspicious foci and background, and target to background ratios were calculated for corrected (TBAC) and uncorrected (TBNAC) images. The shortest distance from the centre of the lesion to the surface of the body (DS) was measured on the corresponding CT slice. Furthermore, ROIs were drawn over the rim and the centre of the liver. Ratios of hepatic count rates for corrected (LRAC) and uncorrected (LRNAC) images were also compared. Results: In lesions located more centrally, TBAC was up to 52% higher, whereas in peripherally located lesions, TBAC was up to 63% lower than TBNAC. The TBAC/TBNAC quotient was linearly correlated with DS. In the liver, attenuation correction resulted in a 35% increase of LRAC compared with LRNAC. Conclusions: Attenuation correction of SPECT images performed by separately acquired CT data is quick and simple. It improves the contrast between target and background for lesions located more centrally in the body and improves homogeneity of the visualisation of tracer uptake in the liver.

Zusammenfassung

Ziel: Mit Hilfe einer neuen Software können SPECT-Bilder nach Fusion mit separat aufgenommenen CT-Bildern schwächungskorrigiert werden. Wir untersuchten den Effekt dieser CT-basierten Schwächungskorrektur auf Indium-111-Pentetreotid-SPECT-Bilder. Methoden: 13 Patienten mit neuroendokrinen Tumoren erhielten ein Indium-111-Pentetreotid-SPECT unter Verwendung einer Doppelkopf-SPECT-Kamera e.cam (Siemens Medical Solutions, Erlangen, Germany) sowie zeitlich davon getrennt ein Spiral-CT. Nach Fusion der SPECT- und CTBilder wurden pixelweise bilinear Schwächungskoeffizienten anhand der Hounsfield-Werte aus den CT-Daten errechnet und schwächungskorrigierte Bilder mittels iterativer Rekonstruktion erzeugt (OSEM 2D). Über fokalen Mehranreicherungen (n = 24) und über dem Hintergrund wurden ROIs (regions of interest) gezeichnet und Target/Hintergrund-Quotienten für die schwächungskorrigierten (TBAC) und nicht schwächungskorrigierten (TBNAC) Datensätze ermittelt. Auf den korrespondierenden CT-Schichten wurde der minimale Abstand des Zentrums der Läsion von der Körperoberfläche (DS) gemessen. Außerdem wurde je eine ROI über der Leberperipherie und der Lebermitte positioniert und die Countratenverhältnisse mit (LRAC) und ohne (LRNAC) Schwächungskorrektur verglichen. Ergebnisse: TBAC war bei mehr zentralen Herden bis zu 52% höher, bei peripheren Läsionen dagegen bis zu 63% niedriger als TBNAC. Der Target/Hintergrund-Quotient zeigt eine lineare Korrelation mit DS. In der Leber führte die Schwächungskorrektur zu einem Anstieg von LRAC um 35% verglichen mit LRNAC. Schlussfolgerung: Die Schwächungskorrektur von SPECT-Bildern mit separaten CT-Daten ist schnell und einfach. Der Kontrast zwischen zentralen Läsionen und dem Hintergrund wird verbessert, die Traceraufnahme in der Leber kommt homogener zur Darstellung.

 
  • References

  • 1 Bai C, Kinahan PE, Brasse D. et al. An analytic study of the effects of attenuation on tumor detection in whole-body PET oncology imaging. J Nucl Med 2003; 44: 1855-61.
  • 2 Bengel FM, Ziegler SI, Avril N. et al. Wholebody positron emission tomography in clinical oncology: comparison between attenuationcorrected and uncorrected images. Eur J Nucl Med 1997; 24: 1091-8.
  • 3 Corbett JR, Ficaro EP. Attenuation corrected cardiac perfusion SPECT. Curr Opin Cardiol 2000; 15: 330-6.
  • 4 Corbett JR, Kritzman JN, Ficaro EP. Attenuation correction for single photon emission computed tomography myocardial perfusion imaging. Curr Cardiol Rep 2004; 6: 32-40.
  • 5 Ficaro EP. Should SPECT attenuation correction be more widely employed in routine clinical practice? For. Eur J Nucl Med Mol Imaging 2002; 29: 409-12.
  • 6 Fiedler E, Platsch G, Schwarz A. et al. Time consumption and quality of an automated fusion tool for SPECT and MRI images of the brain. Nuklearmedizin 2003; 42: 215-9.
  • 7 Gustafsson A, Jacobsson L, Johansson A. et al. Evaluation of various attenuation corrections in lung SPECT in healthy subjects. Nucl Med Commun 2003; 24: 1087-95.
  • 8 Hubbell JH, Berger MJ. In: Jaeger RG. (ed). Engineering Compendium on Radiation Shielding (IAEA, Vienna). Vol. 1, Ch. 4 167-202. Berlin: Springer; 1968
  • 9 Hutton BF, Braun M, Thurfjell L. et al. Image registration: an essential tool for nuclear medicine. Eur J Nucl Med Mol Imaging 2002; 29: 559-77.
  • 10 Hutton BF, Braun M. Software for image registration: algorithms, accuracy, efficacy. Semin Nucl Med 2003; 33: 180-92.
  • 11 Kaczirek K, Prager G, Kienast O. et al. Combined transmission and 99mTc-sestamibi emission tomography for localization of mediastinal parathyroid glands. Nuklearmedizin 2003; 42: 220-3.
  • 12 Kashiwagi T, Yutani K, Fukuchi M. et al. Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate X-ray CT. Ann Nucl Med 2002; 16: 255-61.
  • 13 Keidar Z, Israel O, Krausz Y. SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 2003; 33: 205-18.
  • 14 Krausz Y, Keidar Z, Kogan I. et al. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours. Clin Endocrinol (Oxf) 2003; 59: 565-73.
  • 15 Kuwert T, Morgenroth C, Woesler B. et al. Influence of size of regions of interest on the measurement of uptake of 123I-alpha-methyl tyrosine by brain tumours. Nucl Med Commun 1996; 17: 609-15.
  • 16 Matsunari I, Boning G, Ziegler SI. et al. Effects of misalignment between transmission and emission scans on attenuation-corrected cardiac SPECT. J Nucl Med 1998; 39: 411-6.
  • 17 O’Connor MK, Kemp B, Anstett F. et al. A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models. J Nucl Cardiol 2002; 9: 361-76.
  • 18 Pfannenberg AC, Eschmann SM, Horger M. et al. Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 2003; 30: 835-43.
  • 19 Pfluger T, Vollmar C, Wismüller A. et al. Quantitative comparison of automatic and interactive methods for MRI-SPECT image registration of the brain based on 3-dimensional calculation of error. J Nucl Med 2000; 41: 1823-9.
  • 20 Prvulovich EM, Lonn AH, Bomanji JB. et al. Effect of attenuation correction on myocardial thallium-201 distribution in patients with a low likelihood of coronary artery disease. Eur J Nucl Med 1997; 24: 266-75.
  • 21 Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 2003; 33: 193-204.
  • 22 Turkington TG, Gilland DR. CT-based attenuation correction for SPECT. In: von Schulthess GK. (ed). Clinical molecular anatomic imgaing: PET, PET/CT, and SPECT/CT. Philadelphia: Lippincott Williams & Wilkins; 2003: 59-63.
  • 23 Vija AH, Hawman EG, Engdahl JC. Analysis of SPECT OSEM reconstruction method with 3D beam modelling and optional attenuation correction: Phantom studies. 2003 IEEE Nuclear Science Symposium, Medical Imaging Conference, Portland, USA, 19.-26.11.2003, Conference Record.
  • 24 Wackers FJ. Should SPET attenuation correction be more widely employed in routine clinical practice? Against. Eur J Nucl Med Mol Imaging 2002; 29: 412-5.