Nuklearmedizin 2003; 42(01): 39-44
DOI: 10.1055/s-0038-1623904
Original Article
Schattauer GmbH

Optimaler Akquisitionszeitpunkt für die Herz-PET mit 18F-FDG nach oraler Glukosebelastung[*]

Appropriate uptake period for myocardial PET imaging with 18F-FDG after oral glucose loading
I. Brink
1   Abteilung Nuklearmedizin (Direktor: Prof. Dr. Dr. Dr. h.c. E. Moser), Radiologische Universitätsklinik Freiburg, Deutschland
,
E.U. Nitzsche
2   Abteilung Nuklearmedizin und PET (Direktor: Prof. Dr.J. Müller-Brand), Universitätsklink Basel, Schweiz
,
M. Mix
1   Abteilung Nuklearmedizin (Direktor: Prof. Dr. Dr. Dr. h.c. E. Moser), Radiologische Universitätsklinik Freiburg, Deutschland
,
T. Schindler
3   Division of Nuclear Medicine and Biophysics (Head: Prof. Dr.H.R. Schelbert), UCLA School of Medicine, Los Angeles, CA, USA
,
M. Hentschel
1   Abteilung Nuklearmedizin (Direktor: Prof. Dr. Dr. Dr. h.c. E. Moser), Radiologische Universitätsklinik Freiburg, Deutschland
,
S. Högerle
1   Abteilung Nuklearmedizin (Direktor: Prof. Dr. Dr. Dr. h.c. E. Moser), Radiologische Universitätsklinik Freiburg, Deutschland
,
E. Moser
1   Abteilung Nuklearmedizin (Direktor: Prof. Dr. Dr. Dr. h.c. E. Moser), Radiologische Universitätsklinik Freiburg, Deutschland
› Author Affiliations
Further Information

Publication History

Eingegangen: 20 November 2002

05 December 2002

Publication Date:
10 January 2018 (online)

Summary

Aim: Identification of a rationale for the appropriate uptake period for myocardial 18F-FDG-PET imaging of patients with and without diabetes mellitus. Methods: In a subset of 27 patients, static 2D-PET examination was performed of patients with chronic coronary artery disease and known myocardial infarction. The patients fasted (at least 4 h) before examination. 18F-FDG (330 ± 20 MBq) was injected intravenously. The image quality was semiquantitativly determined by ROI-analysis and the myocardium-to-blood pool activity ratio (M/B) was calculated. I.) Scans 30, 60, and 90 min p. i. of 10 non-diabetic patients (60 g oral glucose loading one hour before FDG-injection, low-dose intravenous insulin bolus if necessary). II.) Scans 30, 60, and 90 min p. i. of 10 patients with known non-insulin dependent diabetes (20 g glucose, insulin bolus). III.) Scans 90 min p. i. of 7 patients with known non-insulin dependent diabetes and elevated fasting serum glucose level (140-200 mg/dl; insulin bolus, no glucose). Results: I.) The M/B ratio significantly increases in non-diabetic patients with the uptake time (30 min 1.95 ± 0.20; 60 min 2.96 ± 0.36; 90 min 3.78 ± 0.43). II.) In patients with non-insulin dependent diabetes the M/B ratio also significantly increases with uptake time. Compared to non-diabetic patients group II reached smaller M/B values (30 min 1.56 ± 0.10; 60 min 2.15 ± 0.14; 90 min 2.71 ± 0.19). III.) In the group of patients with elevated fasting serum glucose level (who only got insulin but no glucose loading) the M/B activity ratio 90 min p. i. was clearly inferior compared with diabetic patients after oral glucose loading and insulin administration (M/B 2.71 ± 0.19 versus 2.16 ± 0.07). Conclusions: In static myocardial viability PET studies with 18F-FDG an uptake time of 90 min yields image quality superior to that obtained after shorter uptake time.

Zusammenfassung

Ziel: Definition eines optimalen Akquisitionszeitpunkts für die myokardiale Vitalitätsdiagnostik mittels statischer 18F-FDG-PET bei Patienten mit und ohne Diabetes mellitus nach oraler Glukoseapplikation. Methodik: Statische PET-Aufnahmen wurden bei 27 Patienten mit koronarer Mehrgefäßerkrankung und anamnestisch dokumentiertem Myokardinfarkt nach 4-stündiger Nahrungskarenz zu unten genannten Zeitpunkten nach Injektion von 330 ± 20 MBq FDG akquiriert. Die Bildbewertung erfolgte semiquantitativ nach ROI-Analyse durch Bestim-mung des Aktivitätsverhältnisses zwischen Myokard und Blutpool (M/B). I.) Scans 30 min, 60 min und 90 min p. i. bei zehn stoffwechselgesunden Patienten (60 g Glukose oral, 1 h vor FDG-Injektion, Insulin nach Bedarf); II.) Scans 30 min, 60 min und 90 min p. i. bei zehn Patienten mit KHK und nicht insulinpflichtigem Diabetes mellitus (20 g Glukose oral, 1 h vor FDG-Injektion, Insulintriggerung); III.) Scans 90 min p. i. bei sieben Patienten mit KHK und nicht insulinpflichtigem Diabetes mellitus mit Nüchtern-Blutzuckerkonzentration zwischen 140 und 200 mg/dl (nur Insulin, keine Glukose). Ergebnisse: I.) Der Quotient M/B erhöht sich signifikant bei Stoffwechselgesunden mit Verlängerung der Uptake-Zeit (30 min 1,95 ± 0,20; 60 min 2,96 ± 0,36; 90 min 3,78 ± 0,43). II.) Nicht insulinpflichtige Diabetiker weisen ein deutlich geringeres M/B-Verhältnis auf, das jedoch ebenfalls mit der Uptake-Zeit signifikant steigt (30 min 1,56 ± 0,10; 60 min 2,15 ± 0,14; 90 min 2,71 ± 0,19). III.) Auch bei erhöhter Nüchtern-Blutzuckerkonzentration ergab eine kombinierte Glukose/Insulingabe gegenüber alleiniger Insulinapplikation 90 min p. i. eine höhere Bildqualität (M/B 2,71 ± 0,19 versus 2,16 ± 0,07). Schlussfolgerung: Die Uptake-Zeit von 90 min führt gegenüber kürzeren Intervallen bei stoffwechselgesunden Patienten und Patienten mit nicht insulinpflichtigem Diabetes mellitus zu verbesserter Bildqualität.

* Diese Arbeit ist Prof. Dr. Dr. h.c. H. Hundeshagen zum 75. Geburtstag gewidmet.


 
  • References

  • 1 Bax JJ, Veening MA, Visser FC. et al. Optimal metabolic conditions durino fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med 1997; 24: 35-41.
  • 2 Bax JJ, Visser FC, Elhendy A. et al. Prediction of improvement of regional left ventricular function after revascularization using different perfusion-metabolism criteria. J Nucl Med 1999; 40: 1866-73.
  • 3 Bergmann SR. Use and limitations of metabolic tracers labeled with positron-emitting radionuclides in the identification of viable myocardium. J Nucl Med 1994; 35 Suppl 15S-22S.
  • 4 Bergmann SR. Cardiac positron emission tomography. Sem Nucl Med 1998; 28: 320-40.
  • 5 Berry JJ, Baker JA, Pieper Ks. et al. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers. J Nucl Med 1991; 32: 1518-25.
  • 6 Brink I, Klenzner T, Krause T. et al. Lymph node staging in extracranial head and neck cancer with FDG PET – what is the appropriate uptake period?. Nuklearmedizin 2002; 41: 108-13.
  • 7 Choi Y, Brunken RC, Hawkins RA. et al. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 1993; 20: 308-18.
  • 8 DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214-23.
  • 9 Eitzman D, Al-Aouar Z, Kanter HL. et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992; 20: 559-65.
  • 10 Gambhir SS, Schwaiger M, Huang SC. et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989; 30: 359-66.
  • 11 Gropler RJ. Methodology governing the assessment of myocardial glucose metabolism by positron emission tomography and fluorine 18-labeled fluorodeoxyglucose. J Nucl Cardiol 1994; 1: S4-14.
  • 12 Gropler RJ, Siegel BA, Lee KJ. et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med 1990; 31: 1749-56.
  • 13 Hamacher K, Coenen HH, Stöcklin G. Efficient stereospecific sythesis of no-carrier-added 2[18F]-fluoro-2-deoxy-D-glucose using amino polyether supported nucleophilic substitution. J Nucl Med 1986; 27: 235-8.
  • 14 Hasegawa S, Kusuoka H, Uehara T. et al. Glucose tolerance and myocardial F-18 fluorodeoxyglucose uptake in normal regions in coronary heart disease patients. Ann Nucl Med 1998; 12: 363-8.
  • 15 Henrich M, Vester E, Jülicher F. et al. Myocardial glucose metabolism in patientswith a coronary artery occlusion: a FDG-PET study in the fasted state and after glucose load. J Nucl Med 1991; 32: 909-14.
  • 16 Knuuti MJ, Nuutila P, Ruotsalainen U. et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992; 33: 1255-62.
  • 17 Knuuti MJ, Nuutila P, Ruotsalainen U. et al. The value of quantitative analysis of glucose utilization in detection of myocardial viability by PET. J Nucl Med 1993; 34: 2068-75.
  • 18 Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med 2002; 29: 1257-66.
  • 19 Kofoed KF, Hove JD, Freiberg J. et al. Variability of insulin-stimulated myocardial glucose uptake in healthy elderly subjects. Eur J Nucl Med 2002; 29: 1600-7.
  • 20 Krivokapich J, Huang SC, Selin CE. et al. Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart. Am J Physiol 1987; 252: H777-87.
  • 21 Kubota K, Kubota R, Yamada S. et al. Reevaluation of myocardial FDG uptake in hyperglycemia. J Nucl Med 1996; 37: 1713-7.
  • 22 Kubota K, Itoh M, Ozaki K. et al. Advantage of delayed whole-body FDG-PET imaging for tumor detection. Eur J Nucl Med 2001; 28: 696-703.
  • 23 Landoni C, Lucignani G, Paolini G. et al. Assessment of CABG-related risk in patients with CAD and LVD. Contribution of PET with [18F]FDG to the assessment of myocardial viability. J Cardiovasc Surg 1999; 40: 363-72.
  • 24 Lewis P, Nunam T, Dynes A. et al. The use of low-dose intravenous insulin in clinical myocardial F-18 FDG PET scanning. Clin Nucl Med 1996; 21: 15-8.
  • 25 Marshall RC, Huang SC, Nash WW. et al. Assessment of the [18F]fluorodeoxyglucose kinetic model in calculations of myocardial glucose metabolism during ischemia. J Nucl Med 1983; 24: 1064 (??).
  • 26 Meyer C, Schwaiger M. Myocardial blood flow and glucose metabolism in diabetes mellitus. Am J Cardiol 1997; 80: 94A-101A.
  • 27 Schäfers M. Methoden und klinische Anwen-dung der Nuklearkardiologie: Positionsbericht. Nuklearmedizin 2002; 41: 3-13.
  • 28 Schelbert HR. Metabolic Imaging to assess myocardial viability. J Nucl Med 1994; 35 Suppl 8S-14S.
  • 29 Schoder H, Campisi R, Ohtake T. et al. Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left venticular contractile dysfunction. J Am Coll Cardiol 199 33: 1328-37.
  • 30 Schröder O, Hör G, Hertel A. et al. Combined hyperinsulinaemic glucose clampand oral acipimox for optimizing metabolic conditions during 18F-fluorodeoxyglucose gated PET cardiac imaging: Comparative results. Nucl Med Comm 1998; 19: 867-74.
  • 31 Vitale GD, deKemp RA, Ruddy Td. et al. Myocardial glucose utilization and optimization of 18F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001; 42: 1730-6.
  • 32 Voipio-Pulkki LM, Nuutila P, Knuuti MJ. et al. Heart and skeletal muscal glucose disposal in type 2 diabetic patients as determined by positron emission tomography. J Nucl Med 1993; 34: 2064-7.
  • 33 vom Dahl J, Altehoefer C, Sheehan FH. et al. Effects of myocardial viability assessed by technetium-99m-sestamibi SPECT and fluorine-18-FDG PET on clinical outcome in coronary artery disease. J Nucl Med 1997; 38: 742-8.
  • 34 Warburg O. The metabolism of tumors. New York: Richard R. Smith Inc.; 1931