Hamostaseologie 2001; 21(01): 37-43
DOI: 10.1055/s-0037-1619503
Labordiagnostik
Schattauer GmbH

Moderne molekularbiologische Thrombophiliediagnostik: Die Genotypisierung der Faktor-V-Leiden- und der Prothrombin-G20210A-Mutation mit dem LightCycler™

Molecular diagnostics of thrombophilia using Light Cycler™
MS. Nauck
1   Abteilung für Klinische Chemie, Universitätsklinik Freiburg
,
W. März
1   Abteilung für Klinische Chemie, Universitätsklinik Freiburg
2   GenioCore Clinical Trial Services, Freiburg
,
MA. Nauck
1   Abteilung für Klinische Chemie, Universitätsklinik Freiburg
,
H. Wieland
1   Abteilung für Klinische Chemie, Universitätsklinik Freiburg
2   GenioCore Clinical Trial Services, Freiburg
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Durch die Identifizierung zweier häufiger Ursachen der hereditären Thrombophilie, der Faktor-V-Leiden-Mutation und der Prothrombinvariante G20210A, hat sich in den letzten Jahren die diagnostische Strategie der Thrombophilieabklärung entscheidend erweitert. Bedingt durch die hohe Prävalenz dieser Mutationen und dem mit ihnen verknüpften erhöhten Thromboserisiko zählt der molekulargenetische Nachweis dieser beiden Risikofaktoren derzeit zu den am häufigsten durchgeführten DNA-Tests überhaupt. Die wachsende Bedeutung dieser Analytik stellt das Labor vor die Herausforderung, sichere und schnelle aber dennoch kostengünstige Methoden einzusetzen.

Mit dem LightCycler™ von Roche Diagnostics steht nun ein Gerätesystem zur schnellen und halbmechanisierten Mutationsdetektion zur Verfügung, das auf innovativer Fluoreszenztechnologie basiert. Es kombiniert in einem Reaktionsansatz die extrem schnelle PCR-Amplifikation mit der unmittelbar nachfolgenden Genotypisierung des PCR-Produktes durch Schmelzkurvenanalyse mittels allelspezifischer Hybridisierungssonden. Aufgrund dieser Ein-Schritt-Methodik ist beim LightCycler die Gefahr der Probenverwechslung und der Kontamination praktisch eliminiert. Darüber hinaus sind die Analysezeiten mit ca. 45 Minuten für 32 Proben extrem kurz.

Die LightCycler-Analytik erweist sich als schnell, robust und zuverlässig und ist aufgrund der geringen Bindung von Arbeitszeit hervorragend für den Einsatz in einem molekulargenetischen Labor geeignet.

Summary

Following identification of the two most frequent causes of hereditary thrombophilia, the factor V Leiden mutation and the prothrombinvariant G20210A, the strategy for the diagnosis of thrombophilia has been significantly extended. Due to the high prevalence of both mutations and the risk of thrombosis they are associated with, the molecular genetic identification of these two inherited risk factors is currently one of the most frequently performed DNA tests. In view of the growing importance of this kind of analysis there is a need for the laboratory to apply reliable, fast and cost-effective methods.

The LightCycler™ is a new PCR-system from Roche Diagnostics for the rapid and semi-automated mutation detection, based on innovative fluorescence technology. It combines rapid-cycle PCR with allele-specific fluorescent probe melting profiles for product genotyping within the same run. Because genotyping with the LightCycler is a single-step analysis within a closed system the risk of sample tracking errors and end-product contamination is nearly eliminated. Furthermore, as 32 samples can be genotyped within 45 minutes, the turnaround time is very brief. Mutation detection on the LightCycler has been proved to be fast, robust and reliable. Because hands-on time required for running the genotyping assays is extremely short, the LightCycler is ideally suited for routine genotyping in a molecular genetic laboratory.

 
  • Literatur

  • 1 Rosendaal FR. Thrombosis in the young: epidemiology and risk factors. A focus on venous thrombosis. Thromb Haemost 1997; 78: 1-6.
  • 2 Rosendaal FR. Risk factors for venous thrombotic disease. Thromb Haemost 1999; 82: 610-9.
  • 3 Heijboer H, Brandjes DP, Buller HR, Sturk A, ten Cate JW. Deficiencies of coagulation-inhibiting and fibrinolytic proteins in outpatients with deep-vein thrombosis. N Engl J Med 1990; 323: 1512-6.
  • 4 Pabinger I, Brucker S, Kyrle PA, Schneider B, Korninger HC, Niessner H, Lechner K. Hereditary deficiency of antithrombin III, protein C and protein S: prevalence in patients with a history of venous thrombosis and criteria for rational patient screening. Blood Coagulation & Fibrinolysis 1992; 3: 547-53.
  • 5 van der Meer FJ, Koster T, Vandenbroucke JP, Briët E, Rosendaal FR. The Leiden Thrombophilia Study (LETS). Thromb Haemost 1997; 78: 631-5.
  • 6 Reitsma PH, Bernardi F, Doig RG, Gandrille S, Greengard JS, Ireland H, Krawczak M, Lind B, Long GL, Poort SR. et al. Protein C deficiency: a database of mutations, 1995 update. On behalf of the Subcommittee on Plasma Coagulation Inhibitors of the Scientific and Standardization Committee of the ISTH. Thromb Haemost 1995; 73: 876-89.
  • 7 Aiach M, Gandrille S, Emmerich J. A review of mutations causing deficiencies of antithrombin, protein C and protein S. Thromb Haemost 1995; 74: 81-9.
  • 8 Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA 1993; 90: 1004-8.
  • 9 Svensson PJ, Dahlbäck B. Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 1994; 330: 517-22.
  • 10 Bertina RM, Koeleman BP, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, van der Velden PA, Reitsma PH. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64-7.
  • 11 Dahlbäck B, Hillarp A, Rosen S, Zoller B. Resistance to activated protein C, the FV:Q506 allele, and venous thrombosis. Annals of Hematology 1996; 72: 166-76.
  • 12 Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Eisenberg PR, Miletich JP. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 1995; 332: 912-7.
  • 13 März W, Seydewitz H, Winkelmann B, Chen M, Nauck M, Witt I. Mutation in coagulation factor V associated with resistance to activated protein C in patients with coronary artery disease. Lancet 1995; 345: 526.
  • 14 Doggen CJ, Cats VM, Bertina RM, Rosendaal FR. Interaction of coagulation defects and cardiovascular risk factors: increased risk of myocardial infarction associated with factor V Leiden or prothrombin 20210A. Circulation 1998; 97: 1037-41.
  • 15 Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698-703.
  • 16 Lane DA, Grant PJ. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 2000; 95: 1517-32.
  • 17 Brown K, Luddington R, Williamson D, Baker P, Baglin T. Risk of venous thromboembolism associated with a G to A transition at position 20210 in the 3’-untranslated region of the prothrombin gene. Br J Haematol 1997; 98: 907-9.
  • 18 Makris M, Preston FE, Beauchamp NJ, Cooper PC, Daly ME, Hampton KK, Bayliss P, Peake IR, Miller GJ. Co-inheritance of the 20210A allele of the prothrombin gene increases the risk of thrombosis in subjects with familial thrombophilia. Thromb Haemost 1997; 78: 1426-9.
  • 19 Blasczyk R, Ritter M, Thiede C, Wehling J, Hintz G, Neubauer A, Riess H. Simple and rapid detection of factor V Leiden by allele-specific PCR amplification. Thromb Haemost 1996; 75: 757-9.
  • 20 van de Locht LT, Kuypers AW, Verbruggen BW, Linssen PC, Novakova IR, Mensink EJ. Semi-automated detection of the factor V mutation by allele specific amplification and capillary electrophoresis. Thromb Haemost 1995; 74: 1276-9.
  • 21 Margaglione M, D’Andrea G, Cappucci G, Grandone E, Giuliani N, Colaizzo D, Vecchione G, Di Minno G. Detection of the factor V Leiden using SSCP. Thromb Haemost 1996; 76: 814-5.
  • 22 Bowen DJ, Standen GR, Granville S, Bowley S, Wood NA, Bidwell J. Genetic diagnosis of factor V Leiden using heteroduplex technology. Thromb Haemost 1997; 77: 119-22.
  • 23 Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ. The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 1997; 22: 176-81.
  • 24 Morrison LE. Detection of energy transfer and fluorescence quenching. In: Kricka LJ. ed. Nonisotopic DNA probe techniques. San Diego: Academic Press; 1992
  • 25 Lay MJ, Wittwer CT. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem 1997; 43: 2262-7.
  • 26 von Ahsen N, Schütz E, Armstrong VW, Oellerich M. Rapid detection of prothrombotic mutations of prothrombin (G20210A), factor V (G1691A), and methylenetetrahydrofolate reductase (C677T) by real-time fluorescence PCR with the LightCycler. Clin Chem 1999; 45: 694-6.
  • 27 Aslanidis C, Nauck M, Schmitz G. High-speed prothrombin G->A 20210 and Methylenetetrahydrofolate Reductase C->T 677 mutation detection using real-time fluorescence PCR and melting curves. Biotechniques 1999; 27: 234-6.
  • 28 Nauck M, März W, Wieland H. Evaluation of the Roche Diagnostics LightCycler-Factor V Leiden Mutation Detection Kit and the Light-Cycler-Prothrombin Mutation Detection Kit. Clin Biochem 2000; 33: 213-6.
  • 29 Chehab FF, Kan YW. Detection of specific DNA sequences by fluorescence amplification: a color complementation assay. Proc Natl Acad Sci USA 1989; 86: 9178-82.
  • 30 Bernard PS, Wittwer CT. Homogeneous amplification and variant detection by fluorescent hybridization probes. Clin Chem 2000; 46: 147-8.
  • 31 Bowen DJ, Standen GR. Genetic detection of factor V Leiden: the question of specificity. Br J Haematol 1997; 97: 691-2.
  • 32 von Ahsen N, Oellerich M, Armstrong VW, Schütz E. Application of a thermodynamic nearest-neighbor model to estimate nucleic acid stability and optimize probe design: prediction of melting points of multiple mutations of apolipoprotein B-3500 and factor V with a hybridization probe genotyping assay on the LightCycler. Clin Chem 1999; 45: 2094-101.
  • 33 Nauck M, Wieland H, März W. Rapid, homogeneous genotyping of the 4G/5G polymorphism in the promoter region of the PAI I gene by fluorescence resonance energy transfer and probe melting curves. Clin Chem 1999; 45: 1141-7.