Summary
Objective: To compare the stiffness and strength of AO bone plates (DCP, LC-DCP, VCP, RCP, and
LP) and the Clamp-Rod Internal Fixation System (CRIF). Study design: In vitro. Sample size: 12 individual implants of 18 plate dimensions and four sizes of CRIF,
each corresponding to 2.0, 2.4/2.7, 3.5, or 4.5 mm screw sizes. Methods: Implant-constructs of each plate and CRIF were created using Canevasit rods as a
bone substitute in an unstable gap fracture model. Six implantconstructs of each type
were tested under single cycle four-point bending loading, and six were tested under
single cycle torsional loading until permanent plastic deformation occurred. Results: Torsional stiffness and yield load of the DCP were always significantly greater than
the CRIF within the same group. Bending properties of the 2.0 DCP were not significantly
different to the 2.0 CRIF. The 2.7 DCP had significantly higher bending values than
the 2.7 CRIF. The bending stiffness of the 3.5 DCP and 4.5 DCP was significantly less
than their CRIF counterparts. While the bending yield load of the 3.5 DCP was significantly
greater than the 3.5 CRIF, the bending yield load of the 4.5 DCP was significantly
less than the 4.5 CRIF. Conclusion: A weakness was found in the torsional resistance of the CRIF constructs compared
to the DCP constructs. Clinical significance: Bone holding power and applied screw torque should be considered when using the CRIF
system in clinical application.
Keywords
Plates - CRIF - stiffness - strength - Mechanical testing