Hamostaseologie 2006; 26(02): 114-118
DOI: 10.1055/s-0037-1616888
Original article
Schattauer GmbH

Die Rolle der Thrombozyten in der Pathophysiologie des akuten Koronarsyndroms

The role of platelets for the pathophysiology of acute coronary syndromes
H. Langer
1   Medizinische Klinik, Abteilung III, Universitätsklinikum Tübingen
,
M. Gawaz
1   Medizinische Klinik, Abteilung III, Universitätsklinikum Tübingen
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Kardiovaskuläre Erkrankungen, besonders die koronare Herzkrankheit, stellen derzeit die häufigste Todesursache in der westlichen Welt dar und repräsentieren eine zentrale Herausforderung für moderne Wissenschaft und Medizin. Die Pathophysiologie der koronaren Herzkrankheit basiert im Wesentlichen auf der Entstehung und dem biologischen Remodelling atherosklerotischer Plaques. Vor allem in fortgeschrittenen Stadien, aber auch in der frühen Phase der Atherosklerose, kommt es zur Ruptur atherosklerotischer Plaques, die zur klinischen Manifestation des akuten Koronarsyndroms in Form instabiler Angina pectoris, nicht transmuralen oder transmuralen Myokardinfarkts führen kann. Neben inflammatorischen Zellen wie Monozyten, spielen Thrombozyten eine essenzielle Rolle in der frühen wie auch der späten Phase atherosklerotischer Erkrankungen.

Diese Übersicht fasst die grundlegenden pathophysiologischen Mechanismen der Plättchenadhäsion und -sekretion, die molekularen Schritte, die in die plättchenvermittelte Thrombusentstehung im Bereich atherosklerotischer Läsionen eingreifen und die Bedeutung der Thrombozytenakkumulation im reperfundierten Myokard zusammen.

Summary

Cardiovascular diseases, especially ischaemic heart disease, are actually the most frequent causes of death in the Western world and represent a central challenge for modern research and medicine. The pathophysiology of ischaemic heart disease is based upon the development and biological remodelling of atherosclerotic plaques. Mainly at late stages, but also in the early phase of atherosclerosis, rupture of the atherosclerotic plaque occurs and may lead to the clinical manifestation of acute coronary syndromes, including unstable angina pectoris, non-transmural or transmural myocardial infarction. Next to inflammation mediating cells like monocytes, platelets play an essential role at early and late stages of atherosclerotic disorders.

This review summarizes the basic pathophysiological mechanism of platelet adhesion and secretion, the molecular steps involved in platelet mediated thrombus formation in the atherosclerotic microenvironment and the role of platelet accumulation in reperfused myocardium. The role of platelets for the pathophysiology of acute coronary syndromes

 
  • References

  • 1 Becker BF, Kupatt C, Massoudy P. et al. Reactive oxygen species and nitric oxide in myocardial ischemia and reperfusion. Z Kardiol 2000; 89 (Suppl. 09) IX/88-91.
  • 2 Becker LC, Ambrosio G. Myocardial consequences of reperfusion. Prog Cardiovasc Dis 1987; 30: 23-44.
  • 3 Bruschke AV, Kramer Jr JR, Bal ET. et al. The dynamics of progression of coronary atherosclerosis studied in 168 medically treated patients who underwent coronary arteriography three times. Am Heart J 1989; 117: 296-305.
  • 4 Cabeza N, Li Z, Schulz C. et al. Surface expression of collagen receptor Fc receptor-gamma/glycoprotein VI is enhanced on platelets in type 2 diabetes and mediates release of CD40 ligand and activation of endothelial cells. Diabetes 2004; 53: 2117-21.
  • 5 Choudhri TF, Hoh BL, Zerwes HG. et al. Reduced microvascular thrombosis and improved outcome in acute murine stroke by inhibiting GP IIb/IIIa receptor- mediated platelet aggregation. J Clin Invest 1998; 102: 1301-10.
  • 6 Cura FA, L’Allier PL, Kapadia SR. et al. Predictors and prognosis of suboptimal coronary blood flow after primary coronary angioplasty in patients with acute myocardial infarction. Am J Cardiol 2001; 88: 124-8.
  • 7 De Boer OJ, van der Wal AC, Teeling P. et al. Leucocyte recruitment in rupture prone regions of lipid- rich plaques: a prominent role for neovascularization?. Cardiovasc Res 1999; 41: 443-9.
  • 8 Fateh-Moghadam S, Li Z, Ersel S. et al. Platelet degranulation is associated with progression of intima- media thickness of the common carotid artery in patients with diabetes mellitus type 2. Arterioscler Thromb Vasc Biol 2005; 25: 1299-303.
  • 9 Folts JD, Crowell Jr EB, Rowe GG. Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation 1976; 54: 365-70.
  • 10 Gassler JP, Topol EJ. Reperfusion revisited: beyond TIMI 3 flow. Clin Cardiol 1999; 22: IV20-9.
  • 11 Gawaz M, Konrad I, Hauser AI. et al. Non-invasive imaging of glycoprotein VI binding to injured arterial lesions. Thromb Haemost 2005; 93: 910-3.
  • 12 Gawaz M, Neumann FJ, Dickfeld T. et al. Activated platelets induce monocyte chemotactic protein- 1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells. Circulation 1998; 98: 1164-71.
  • 13 Gawaz M. Blood platelets. Stuttgart: Thieme; 1999
  • 14 Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res 2004; 61: 498-511.
  • 15 Gawaz MP, Loftus JC, Bajt ML. et al. Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. J Clin Invest 1991; 88: 1128-34.
  • 16 Hansen PR. Inflammatory alterations in the myocardial microcirculation. J Mol Cell Cardiol 1998; 30: 2555-9.
  • 17 Heusch G, Schulz R, Baumgart D. et al. Coronary microembolization. Prog Cardiovasc Dis 2001; 44: 217-30.
  • 18 Ito H. No reflow phenomenon in coronary heart disease. J Cardiol 2001; 37 (Suppl. 01) 39-42.
  • 19 Kupatt C, Habazettl H, Hanusch P. et al. c7E3Fab reduces postischemic leukocyte-thrombocyte interaction mediated by fibrinogen. Implications for myocardial reperfusion injury. Arterioscler Thromb Vasc Biol 2000; 20: 2226-32.
  • 20 Lefer AM, Campbell B, Scalia R. et al. Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion: role of selectins. Circulation 1998; 98: 1322-8.
  • 21 Libby P. Inflammation in atherosclerosis. Nature 2002; 19–26 420: 868-74.
  • 22 Massberg S, Brand K, Gruner S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196: 887-96.
  • 23 Massberg S, Gawaz M, Gruner S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197: 41-9.
  • 24 Maxwell SR, Lip GY. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol 1997; 58: 95-117.
  • 25 Piper HM, Meuter K, Schafer C. Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg 2003; 75: S644-8.
  • 26 Plow EF, Byzova T. The biology of glycoprotein IIb-IIIa. Coron Artery Dis 1999; 10: 547-51.
  • 27 Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340: 115-126.
  • 28 Ruggeri ZM. New insights into the mechanisms of platelet adhesion and aggregation. Semin Hematol 1994; 31: 229-39.
  • 29 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 8: 1227-34.
  • 30 Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84: 289-97.
  • 31 Schachinger V, Assmus B, Britten MB. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 2004; 19 (44) 1690-9.
  • 32 Schäfers M, Riemann B, Kopka K. et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 2004; 109: 2554-9.
  • 33 Skyschally A, Erbel R, Heusch G. Coronary microembolization. Circ J 2003; 67: 279-86.
  • 34 Sukhova GK, Schonbeck U, Rabkin E. et al. Evidence for increased collagenolysis by interstitial collagenases-1 and –3 in vulnerable human atheromatous plaques. Circulation 1999; 99: 2503-9.
  • 35 Topol EJ, Yadav JS. Recognition of the importance of embolization in atherosclerotic vascular disease. Circulation 2000; 101: 570-80.
  • 36 Wollert KC, Meyer GP, Lotz J. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364: 141-8.
  • 37 Wu KC, Zerhouni EA, Judd RM. et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998; 97: 765-72.
  • 38 Yokoya K, Takatsu H, Suzuki T. et al. Process of progression of coronary artery lesions from mild or moderate stenosis to moderate or severe stenosis: A study based on four serial coronary arteriograms per year. Circulation 1999; 100: 903-9.