Hamostaseologie 2006; 26(02): 123-130
DOI: 10.1055/s-0037-1616886
Original article
Schattauer GmbH

Die Rolle der Gefäßwand in der Pathophysiologie des akuten Koronarsyndroms

Role of the vascular wall in the pathophysiology of the acute coronary syndrome
M. Merten
1   Klinik für Kardiologie und Angiologie (Direktor: Prof. Dr. med. T. Meinertz), Universitäres Herzzentrum, Universitätsklinikum Hamburg-Eppendorf
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Das Endothel ist in der Entstehung des akuten Koronarsyndroms von entscheidender Bedeutung. Als endo-/parakrines Organ nimmt das Endothel eine Schlüsselfunktion in der Regulation der vaskulären Homöostase ein. Die endotheliale Integrität und vor allem die Bioverfügbarkeit von Stickstoffmonoxid (NO) sind essenziell für die korrekte Funktion des Endothels. Kardiale Risikofaktoren können eine Endotheldysfunktion mit einem resultierenden Ungleichgewicht der vaskulären Homöostase verursachen. Im inflammatorischen oder prothrombotischen Zustand zeigt das Endothel oxidativen Stress, vermehrte Expression von Zelladhäsionsmolekülen, eine Aktivierung von Zell-Signalsystemen (Renin-Angiotensin-System, CD40/CD40L-System) und insbesondere einen NO-Verlust. Diese entzündungsbedingten Kaskaden führen oft über Jahre zur Koronarsklerose oder binnen kurzer Zeit zum akuten Koronarsyndrom, das durch Endothelerosion oder die Ruptur einer instabilen Plaque ausgelöst wird. Durch die Kenntnis der pathophysiologischen Vorgänge in der Gefäßwand beim akuten Koronarsyndrom lassen sich sowohl Hochrisikopatienten identifizieren als auch gezielte therapeutische Maßnahmen entwickeln.

Summary

The endothelium is of important significance in the development of the acute coronary syndrome. As an endo-/paracrine organ, the endothelium plays a key role in the regulation of the vascular homeostasis. The endothelial integrity and above all the bioavailability of nitric oxide (NO) are essential for the correct function of the endothelium. Cardiac risk factors may lead to an endothelial dysfunction with a consecutive imbalance of the vascular homeostasis. In an inflammatory or prothrombotic state the endothelium shows a number of abnormalities such as oxidative stress, expression of cell adhesion molecules, activation of cell signal- systems (renin-angiotensin-system, CD40/CD40L-system) and especially the loss of NO. The inflammatory cascades lead to coronary atherosclerosis over years or, more instantly, to the acute coronary syndrome caused by endothelial erosion or the rupture of an instable plaque. The knowledge of the pathophysiological processes in the arterial wall during the acute coronary syndrome may lead to the identification of high risk patients and the development of more targeted therapies.

 
  • References

  • 1 Andrews RK, Shen Y, Gardiner EE. et al. The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb Haemost 1999; 82: 357-64.
  • 2 Arnold WP, Mittal CK, Katsuki S. et al. Nitric oxide activates guanylate cyclase and increases guanosine 3‘:5‘-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A 1977; 74: 3203-7.
  • 3 Audoly LP, Rocca B, Fabre JE. et al. Cardiovascular responses to the isoprostanes iPF(2alpha)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo. Circulation 2000; 101: 2833-40.
  • 4 Aurrand-Lions M, Lamagna C, Dangerfield JP. et al. Junctional adhesion molecule-C regulates the early influx of leukocytes into tissues during inflammation. J Immunol 2005; 174: 6406-15.
  • 5 Brown AS, Moro MA, Masse JM. et al. Nitric oxide- dependent and independent effects on human platelets treated with peroxynitrite. Cardiovasc Res 1998; 40: 380-8.
  • 6 Bode-Boger SM, Boger RH, Kienke S. et al. Elevated L-arginine/dimethylarginine ratio contributes to enhanced systemic NO production by dietary L-arginine in hypercholesterolemic rabbits. Biochem Biophys Res Commun 1996; 219: 598-603.
  • 7 Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 2003; 24: 471-8.
  • 8 Celermajer DS, Sorensen KE, Gooch VM. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340: 1111-5.
  • 9 Chappell SP, Lewis MJ, Henderson AH. Effect of lipid feeding on endothelium dependent relaxation in rabbit aortic preparations. Cardiovasc Res 1987; 21: 34-8.
  • 10 Coleman RA, Smith WL, Narumiya S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994; 46: 205-29.
  • 11 Cybulsky MI, Gimbrone Jr MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251: 788-91.
  • 12 Davi G, Ganci A, Averna M. et al. Thromboxane biosynthesis, neutrophil and coagulative activation in type IIa hypercholesterolemia. Thromb Haemost 1995; 74: 1015-9.
  • 13 De Caterina R, Libby P, Peng HB. et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96: 60-8.
  • 14 Diacovo TG, Roth SJ, Buccola JM. et al. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 1996; 88: 146-57.
  • 15 Dinerman JL, Mehta JL. Endothelial, platelet and leukocyte interactions in ischemic heart disease: insights into potential mechanisms and their clinical relevance. J Am Coll Cardiol 1990; 16: 207-22.
  • 16 Dormann D, Clemetson JM, Navdaev A. et al. Alboaggregin A activates platelets by a mechanism involving glycoprotein VI as well as glycoprotein Ib. Blood 2001; 97: 929-36.
  • 17 Drexler H, Zeiher AM, Meinzer K. et al. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 1991; 338: 1546-50.
  • 18 Dulak J, Polus M, Guevara I, Polus A, Hartwich J, Dembinska-Kiec A. Regulation of inducible nitric oxide synthase (iNOS) and GTP cyclohydrolase I (GTP-CH I) gene expression by ox-LDL in rat vascular smooth muscle cells. J Physiol Pharmacol 1997; 48: 689-97.
  • 19 d‘Uscio LV, Barton M, Shaw S. et al. Endothelin in atherosclerosis: importance of risk factors and therapeutic implications. J Cardiovasc Pharmacol 2000; 35 4 Suppl 2 S55-59.
  • 20 Freiman PC, Mitchell GG, Heistad DD. et al. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res 1986; 58: 783-9.
  • 21 Frenette PS, Denis CV, Weiss L. et al. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med 2000; 191: 1413-22.
  • 22 Gimbrone Jr MA, Kume N, Cybulsky MI. Vascular endothelial dysfunction and the pathogenesis of atherosclerosis. In. Weber P, Leaf A. editors. Atherosclerosis Reviews. vol. 25. New York: Raven Press; 1993
  • 23 Grisham MB, Granger DN, Lefer DJ. Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. Free Radic Biol Med 1998; 25: 404-33.
  • 24 Goldstein JL, Kita T, Brown MS. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N Engl J Med 1983; 309: 288-96.
  • 25 Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium- derived vascular relaxing factor. Nature 1986; 320: 454-6.
  • 26 Hamsten A. Hemostatic function and coronary artery disease. N Engl J Med 1995; 332: 677-8.
  • 27 Henn V, Slupsky JR, Grafe M. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391: 591-4.
  • 28 Hickey MJ, Kubes P. Role of nitric oxide in regulation of leucocyte-endothelial cell interactions. Exp Physiol 1997; 82: 339-48.
  • 29 Higashi Y, Sasaki S, Nakagawa K, Kimura M, Noma K, Hara K, Jitsuiki D, Goto C, Oshima T, Chayama K, Yoshizumi M. Tetrahydrobiopterin improves aging-related impairment of endothelium- dependent vasodilation through increase in nitric oxide production. Atherosclerosis. 2005 Epub ahead of print.
  • 30 Jenkins AJ, Best JD, Klein RL. et al. ‘Lipoproteins, glycoxidation and diabetic angiopathy‘. Diabetes Metab Res Rev 2004; 20: 349-68.
  • 31 Jones DA, Abbassi O, McIntire LV. et al. Pselectin mediates neutrophil rolling on histaminestimulated endothelial cells. Biophys J 1993; 65: 1560-9.
  • 32 Kugiyama K, Kerns SA, Morrisett JD. et al. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 1990; 344: 160-2.
  • 33 Lefer DJ, Jones SP, Girod WG. et al. Leukocyteendothelial cell interactions in nitric oxide synthase- deficient mice. Am J Physiol 1999; 276: H1943-50.
  • 34 Levin ER. Endothelins. N Engl J Med 1995; 333: 356-63.
  • 35 Liao JK, Shin WS, Lee WY. et al. Oxidized lowdensity lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 1995; 270: 319-24.
  • 36 Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995; 91: 2844-50.
  • 37 Lorant DE, Patel KD, McIntyre TM. et al. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J Cell Biol 1991; 115: 223-34.
  • 38 Lopez-Farre A, Sanchez de Miguel L, Monton M. et al. Angiotensin II AT(1) receptor antagonists and platelet activation. Nephrol Dial Transplant 2001; 16 (Suppl. 01) 45-9.
  • 39 Ludmer PL, Selwyn AP, Shook TL. et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986; 315: 1046-51.
  • 40 Marcus AJ, Broekman MJ, Drosopoulos JH. et al. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 1997; 99: 1351-60.
  • 41 Massberg S, Gawaz M, Gruner S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197: 41-9.
  • 42 McEver RP, Beckstead JH, Moore KL. et al. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest 1989; 84: 92-9.
  • 43 Moro MA, Darley-Usmar VM, Goodwin DA. et al. Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci U S A 1994; 91: 6702-6.
  • 44 Morrow JD, Hill KE, Burk RF. et al. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical- catalyzed mechanism. Proc Natl Acad Sci U S A 1990; 87: 9383-7.
  • 45 Moons AH, Levi M, Peters RJ. Tissue factor and coronary artery disease. Cardiovasc Res 2002; 53: 313-25.
  • 46 Nickenig G. Central role of the AT(1)-receptor in atherosclerosis. J Hum Hypertens 2002; 16 (Suppl. 03) S26-33.
  • 47 Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91: 2546-51.
  • 48 Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664-6.
  • 49 Phillips MI, Kagiyama S. Angiotensin II as a proinflammatory mediator. Curr Opin Investig Drugs. 2002; 3: 569-77.
  • 50 Polgar J, Matuskova J, Wagner DD. The P-selectin, tissue factor, coagulation triad. J Thromb Haemost. 2005; 3: 1590-6.
  • 51 Radi R, Beckman JS, Bush KM. et al. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991; 266: 4244-50.
  • 52 Robson SC, Kaczmarek E, Siegel JB. et al. Loss of ATP diphosphohydrolase activity with endothelial cell activation. J Exp Med 1997; 185: 153-63.
  • 53 Romo GM, Dong JF, Schade AJ. et al. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 1999; 190: 803-14.
  • 54 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362: 801-9.
  • 55 Ruggeri ZM. Old concepts and new developments in the study of platelet aggregation. J Clin Invest 2000; 105: 699-701.
  • 56 Schonbeck U, Mach F, Sukhova GK. et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture?. Circ Res 1997; 81: 448-54.
  • 57 Semb AG, van Wissen S, Ueland T. et al. Raised serum levels of soluble CD40 ligand in patients with familial hypercholesterolemia: downregulatory effect of statin therapy. J Am Coll Cardiol 2003; 41: 275-9.
  • 58 Slowik MR, Min W, Ardito T. et al. Evidence that tumor necrosis factor triggers apoptosis in human endothelial cells by interleukin-1-converting enzyme- like protease-dependent and -independent pathways. Lab Invest 1997; 77: 257-67.
  • 59 Smith WL. The eicosanoids and their biochemical mechanisms of action. Biochem J 1989; 259: 315-24.
  • 60 Strawn WB, Ferrario CM. Mechanisms linking angiotensin II and atherogenesis. Curr Opin Lipidol 2002; 13: 505-12.
  • 61 Taddei S, Virdis A, Ghiadoni L, Salvetti G. et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension 2001; 38: 274-9.
  • 62 Takahara K, Murray R, FitzGerald GA. et al. The response to thromboxane A2 analogues in human platelets. Discrimination of two binding sites linked to distinct effector systems. J Biol Chem 1990; 265: 6836-44.
  • 63 Takahashi K, Nammour TM, Fukunaga M. et al. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxaneA2 receptors. J Clin Invest 1992; 90: 136-41.
  • 64 Urbich C, Dernbach E, Aicher A. et al. CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation 2002; 106: 981-6.
  • 65 van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol 2000; 67: 2-17.
  • 66 Vita JA, Treasure CB, Nabel EG. et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990; 81: 491-7.
  • 67 von Hundelshausen P, Weber KS, Huo Y. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation. 2001; 103: 1772-7.
  • 68 Wang S, Dangerfield JP, Young RE. et al. PECAM- 1, alpha6 integrins and neutrophil elastase cooperate in mediating neutrophil transmigration. J Cell Sci 2005; 118: 2067-76.
  • 69 Warnholtz A, Nickenig G, Schulz E. et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 1999; 99: 2027-33.
  • 70 Wilcox JN, Smith KM, Schwartz SM. et al. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci U S A 1989; 86: 2839-43.
  • 71 Xu XP, Meisel SR, Ong JM. et al. Oxidized lowdensity lipoprotein regulates matrix metalloproteinase- 9 and its tissue inhibitor in human monocyte- derived macrophages. Circulation 1999; 99: 993-8.
  • 72 Zeiher AM, Drexler H, Wollschlager H. et al. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991; 83: 391-401.