Semin Musculoskelet Radiol 2018; 22(01): 025-045
DOI: 10.1055/s-0037-1615782
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Nuclear Medicine Applications in Pediatric Musculoskeletal Diseases: The Added Value of Hybrid Imaging

Marguerite T. Parisi
1   Departments of Radiology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
2   Departments of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
,
Ramesh S. Iyer
1   Departments of Radiology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
,
A. Luana Stanescu
1   Departments of Radiology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
› Author Affiliations
Further Information

Publication History

Publication Date:
06 February 2018 (online)

Abstract

The introduction of diphosphonates in the 1970s revolutionized not only nuclear medicine but musculoskeletal imaging as well, providing functional assessment of entities such as osteomyelitis, trauma, and osseous metastatic disease. Although rarely the first-line imaging modality used today, nuclear medicine procedures continue to play a pivotal role in the evaluation of musculoskeletal diseases in children, providing whole-body assessment of disease involvement. More recently, the introduction of technologies such as single-photon emission computed tomography/computed tomography (SPECT/CT), as well as newer positron-emitting tracers such as 18fluorine-fluorodeoxyglucose and sodium 18F-fluorine, particularly when combined with CT (positron emission tomography/CT), have injected new life into the older established techniques and expanded the application of nuclear medicine imaging into new arenas. This article discusses the utility of standard nuclear medicine procedures as they apply to children with musculoskeletal disorders, focusing on the added value of and indications for SPECT/CT. Subsequently, we discuss the expanding role of positron-emitting agents in infection, trauma, and for the diagnosis, staging, and therapeutic response monitoring of children with malignant bone and soft tissue tumors. Differences between disease processes encountered in children as compared with adults are discussed; developmental variants that can, but should not, be confused with disease are illustrated. The need for pediatric-specific protocols is addressed.

 
  • References

  • 1 Nadel HR. Bone scan update. Semin Nucl Med 2007; 37 (05) 332-339
  • 2 Shammas A. Nuclear medicine imaging of the pediatric musculoskeletal system. Semin Musculoskelet Radiol 2009; 13 (03) 159-180
  • 3 Ma JJ, Kang BK, Treves ST. Pediatric musculoskeletal nuclear medicine. Semin Musculoskelet Radiol 2007; 11 (04) 322-334
  • 4 Mariani G, Bruselli L, Kuwert T. , et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 2010; 37 (10) 1959-1985
  • 5 Buck AK, Nekolla S, Ziegler S. , et al. SPECT/CT. J Nucl Med 2008; 49 (08) 1305-1319
  • 6 Trout AT, Sharp SE, Anton CG, Gelfand MJ, Mehlman CT. Spondylolysis and beyond: value of SPECT/CT in evaluation of low back pain in children and young adults. Radiographics 2015; 35 (03) 819-834
  • 7 Daldrup-Link H. How PET/MR can add value for children with cancer. Curr Radiol Rep 2017; 5 (03) 15
  • 8 Gelfand MJ, Lemen LC. PET/CT and SPECT/CT dosimetry in children: the challenge to the pediatric imager. Semin Nucl Med 2007; 37 (05) 391-398
  • 9 Parisi MT, Bermo MS, Alessio AM, Sharp SE, Gelfand MJ, Shulkin BL. Optimization of Pediatric PET/CT. Semin Nucl Med 2017; 47 (03) 258-274
  • 10 Go with the Guidelines. Available at: http://www.snm.org/docs/GoWithGuidelines.html . Accessed November 11, 2017
  • 11 Lassmann M, Treves ST. ; EANM/SNMMI Paediatric Dosage Harmonization Working Group. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging 2014; 41 (05) 1036-1041
  • 12 Treves ST, Gelfand MJ, Fahey FH, Parisi MT. 2016 Update of the North American Consensus Guidelines for Pediatric Administered Radiopharmaceutical Activities. J Nucl Med 2016; 57 (12) 15N-18N
  • 13 Genant HK, Bautovich GJ, Singh M, Lathrop KA, Harper PV. Bone-seeking radionuclides: an in vivo study of factors affecting skeletal uptake. Radiology 1974; 113 (02) 373-382
  • 14 Galasko CS. The pathological basis for skeletal scintigraphy. J Bone Joint Surg Br 1975; 57 (03) 353-359
  • 15 Love C, Palestro CJ. Radionuclide imaging of inflammation and infection in the acute care setting. Semin Nucl Med 2013; 43 (02) 102-113
  • 16 Palestro CJ. Radionuclide imaging of musculoskeletal infection: a review. J Nucl Med 2016; 57 (09) 1406-1412
  • 17 Scharf SC. Bone SPECT/CT in skeletal trauma. Semin Nucl Med 2015; 45 (01) 47-57
  • 18 Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab 2010; 95 (06) 2596-2606
  • 19 Leung A, Shapiro B, Hattner R. , et al. Specificity of radioiodinated MIBG for neural crest tumors in childhood. J Nucl Med 1997; 38 (09) 1352-1357
  • 20 Parisi MT, Eslamy H, Park JR, Shulkin BL, Yanik GA. 131I-Metaiodobenzylguanidine theranostics in neuroblastoma: historical perspectives; practical applications. Semin Nucl Med 2016; 46 (03) 184-202
  • 21 Sharp SE, Gelfand MJ, Shulkin BL. Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med 2011; 41 (05) 345-353
  • 22 Shulkin BL, Shapiro B, Hutchinson RJ. Iodine-131-metaiodobenzylguanidine and bone scintigraphy for the detection of neuroblastoma. J Nucl Med 1992; 33 (10) 1735-1740
  • 23 Parisi MT, Greene MK, Dykes TM, Moraldo TV, Sandler ED, Hattner RS. Efficacy of metaiodobenzylguanidine as a scintigraphic agent for the detection of neuroblastoma. Invest Radiol 1992; 27 (10) 768-773
  • 24 Matthay KK, Shulkin B, Ladenstein R. , et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer 2010; 102 (09) 1319-1326
  • 25 Brisse HJ, McCarville MB, Granata C. , et al; International Neuroblastoma Risk Group Project. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology 2011; 261 (01) 243-257
  • 26 Fukuoka M, Taki J, Mochizuki T, Kinuya S. Comparison of diagnostic value of I-123 MIBG and high-dose I-131 MIBG scintigraphy including incremental value of SPECT/CT over planar image in patients with malignant pheochromocytoma/paraganglioma and neuroblastoma. Clin Nucl Med 2011; 36 (01) 1-7
  • 27 Rozovsky K, Koplewitz BZ, Krausz Y. , et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol 2008; 190 (04) 1085-1090
  • 28 Palestro CJ, Love C, Bhargava KK. Labeled leukocyte imaging: current status and future directions. Q J Nucl Med Mol Imaging 2009; 53 (01) 105-123
  • 29 Gainey MA, Siegel JA, Smergel EM, Jara BJ. Indium-111-labeled white blood cells: dosimetry in children. J Nucl Med 1988; 29 (05) 689-694
  • 30 Parisi MT. Functional imaging of infection: conventional nuclear medicine agents and the expanding role of 18-F-FDG PET. Pediatr Radiol 2011; 41 (07) 803-810
  • 31 Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of oradiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 1978; 19 (10) 1154-1161
  • 32 Basu S, Chryssikos T, Moghadam-Kia S, Zhuang H, Torigian DA, Alavi A. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities. Semin Nucl Med 2009; 39 (01) 36-51
  • 33 Fischer DR. Musculoskeletal imaging using fluoride PET. Semin Nucl Med 2013; 43 (06) 427-433
  • 34 Jadvar H, Desai B, Conti PS. Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin Nucl Med 2015; 45 (01) 58-65
  • 35 Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med 1962; 3: 332-334
  • 36 Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 2008; 49 (01) 68-78
  • 37 Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 2010; 51 (12) 1826-1829
  • 38 Even-Sapir E, Mishani E, Flusser G, Metser U. 18F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med 2007; 37 (06) 462-469
  • 39 Ohnona J, Michaud L, Balogova S. , et al. Can we achieve a radionuclide radiation dose equal to or less than that of 99mTc-hydroxymethane diphosphonate bone scintigraphy with a low-dose 18F-sodium fluoride time-of-flight PET of diagnostic quality?. Nucl Med Commun 2013; 34 (05) 417-425
  • 40 Drubach LA, Connolly SA, Palmer III EL. Skeletal scintigraphy with 18F-NaF PET for the evaluation of bone pain in children. AJR Am J Roentgenol 2011; 197 (03) 713-719
  • 41 Nadel HR. Pediatric bone scintigraphy update. Semin Nucl Med 2010; 40 (01) 31-40
  • 42 Fredericson M, Jennings F, Beaulieu C, Matheson GO. Stress fractures in athletes. Top Magn Reson Imaging 2006; 17 (05) 309-325
  • 43 Changstrom BG, Brou L, Khodaee M, Braund C, Comstock RD. Epidemiology of stress fracture injuries among US high school athletes, 2005–2006 through 2012–2013. Am J Sports Med 2015; 43 (01) 26-33
  • 44 Zukotynski K, Grant FD, Curtis C, Micheli L, Treves ST. Skeletal scintigraphy in pediatric sports medicine. AJR Am J Roentgenol 2010; 195 (05) 1212-1219
  • 45 Rupani HD, Holder LE, Espinola DA, Engin SI. Three-phase radionuclide bone imaging in sports medicine. Radiology 1985; 156 (01) 187-196
  • 46 Ishibashi Y, Okamura Y, Otsuka H, Nishizawa K, Sasaki T, Toh S. Comparison of scintigraphy and magnetic resonance imaging for stress injuries of bone. Clin J Sport Med 2002; 12 (02) 79-84
  • 47 Van der Wall H, Lee A, Magee M, Frater C, Wijesinghe H, Kannangara S. Radionuclide bone scintigraphy in sports injuries. Semin Nucl Med 2010; 40 (01) 16-30
  • 48 Jackson DW. Shinsplints: an update. Phys Sportsmed 1978; 6 (10) 50-61
  • 49 Mubarak SJ, Gould RN, Lee YF, Schmidt DA, Hargens AR. The medial tibial stress syndrome. A cause of shin splints. Am J Sports Med 1982; 10 (04) 201-205
  • 50 Parisi MT. Toddler's fracture. In: Rajendran J, Manchanda V. , eds. Nuclear Medicine Cases. New York, NY: McGraw-Hill; 2011: 433-435
  • 51 Calvo-Muñoz I, Gómez-Conesa A, Sánchez-Meca J. Prevalence of low back pain in children and adolescents: a meta-analysis. BMC Pediatr 2013; 13: 14
  • 52 Gurd DP. Back pain in the young athlete. Sports Med Arthrosc Rev 2011; 19 (01) 7-16
  • 53 Micheli LJ, Wood R. Back pain in young athletes. Significant differences from adults in causes and patterns. Arch Pediatr Adolesc Med 1995; 149 (01) 15-18
  • 54 Standaert CJ. Spondylolysis in the adolescent athlete. Clin J Sport Med 2002; 12 (02) 119-122
  • 55 Leone A, Cianfoni A, Cerase A, Magarelli N, Bonomo L. Lumbar spondylolysis: a review. Skeletal Radiol 2011; 40 (06) 683-700
  • 56 Yang J, Servaes S, Edwards K, Zhuang H. Prevalence of stress reaction in the pars interarticularis in pediatric patients with new-onset lower back pain. Clin Nucl Med 2013; 38 (02) 110-114
  • 57 Stabin MG, Gelfand MJ. Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med 1998; 42 (02) 93-112
  • 58 Cavalier R, Herman MJ, Cheung EV, Pizzutillo PD. Spondylolysis and spondylolisthesis in children and adolescents: I. Diagnosis, natural history, and nonsurgical management. J Am Acad Orthop Surg 2006; 14 (07) 417-424
  • 59 Sharp SE, Gelfand MJ, Anton CG. Bone SPECT/CT compared to bone SPECT and conventional radiographs in pediatric spondylolysis evaluation. J Nucl Med 2012; 53 (Suppl. 01) 262
  • 60 Campbell RS, Grainger AJ, Hide IG, Papastefanou S, Greenough CG. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI. Skeletal Radiol 2005; 34 (02) 63-73
  • 61 Connolly LP, Drubach LA, Connolly SA, Treves ST. Young athletes with low back pain: skeletal scintigraphy of conditions other than pars interarticularis stress. Clin Nucl Med 2004; 29 (11) 689-693
  • 62 Gelfand MJ, Sharp SE. Bone SPECT with low dose co-registered CT in pediatric patients. J Nucl Med 2010; 37 (Suppl. 02) 211
  • 63 Castellvi AE, Goldstein LA, Chan DP. Lumbosacral transitional vertebra and their relationship with lumbar extradural defects. Spine (Phila PA 1976) 1984; 9 (05) 493-495
  • 64 Connolly LP, d'Hemecourt PA, Connolly SA, Drubach LA, Micheli LJ, Treves ST. Skeletal scintigraphy of young patients with low-back pain and a lumbosacral transitional vertebra. J Nucl Med 2003; 44 (06) 909-914
  • 65 Konin GP, Walz DM. Lumbosacral transitional vertebrae: classification, imaging findings, and clinical relevance. AJNR Am J Neuroradiol 2010; 31 (10) 1778-1786
  • 66 Quinlan JF, Duke D, Eustace S. Bertolotti's syndrome. A cause of back pain in young people. J Bone Joint Surg Br 2006; 88 (09) 1183-1186
  • 67 Jancuska JM, Spivak JM, Bendo JA. A review of symptomatic lumbosacral transitional vertebrae: Bertolotti's syndrome. Int J Spine Surg 2015; 9: 42
  • 68 Ovadia D, Metser U, Lievshitz G, Yaniv M, Wientroub S, Even-Sapir E. Back pain in adolescents: assessment with integrated 18F-fluoride positron-emission tomography-computed tomography. J Pediatr Orthop 2007; 27 (01) 90-93
  • 69 Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop 2007; 27 (03) 277-282
  • 70 National statistics on child abuse. Available at: http://nationalchildrensalliance.org/media-room/media-kit/national-statistics-child-abuse . Accessed November 18, 2017
  • 71 Mandelstam SA, Cook D, Fitzgerald M, Ditchfield MR. Complementary use of radiological skeletal survey and bone scintigraphy in detection of bony injuries in suspected child abuse. Arch Dis Child 2003; 88 (05) 387-390 ; discussion 387–390
  • 72 Bainbridge JK, Huey BM, Harrison SK. Should bone scintigraphy be used as a routine adjunct to skeletal survey in the imaging of non-accidental injury? A 10 year review of reports in a single centre. Clin Radiol 2015; 70 (08) e83-e89
  • 73 Diagnostic imaging of child abuse. Available at: http://pediatrics.aappublications.org/content/123/5/1430 . Accessed November 18, 2017
  • 74 Drubach LA, Johnston PR, Newton AW, Perez-Rossello JM, Grant FD, Kleinman PK. Skeletal trauma in child abuse: detection with 18F-NaF PET. Radiology 2010; 255 (01) 173-181
  • 75 Drubach LA, Sapp MV, Laffin S, Kleinman PK. Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol 2008; 38 (07) 776-779
  • 76 Mettler Jr FA, Guiberteau MJ. Essentials of Nuclear Medicine. 5th ed. Philadelphia, PA: Saunders; 2006. :379, 388-393
  • 77 Aoki J, Watanabe H, Shinozaki T. , et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001; 219 (03) 774-777
  • 78 Shin DS, Shon OJ, Han DS, Choi JH, Chun KA, Cho IH. The clinical efficacy of (18)F-FDG-PET/CT in benign and malignant musculoskeletal tumors. Ann Nucl Med 2008; 22 (07) 603-609
  • 79 Atesok KI, Alman BA, Schemitsch EH, Peyser A, Mankin H. Osteoid osteoma and osteoblastoma. J Am Acad Orthop Surg 2011; 19 (11) 678-689
  • 80 Chai JW, Hong SH, Choi JY. , et al. Radiologic diagnosis of osteoid osteoma: from simple to challenging findings. Radiographics 2010; 30 (03) 737-749
  • 81 Lisbona R, Rosenthall L. Role of radionuclide imaging in osteoid osteoma. AJR Am J Roentgenol 1979; 132 (01) 77-80
  • 82 Imperiale A, Moser T, Ben-Sellem D, Mertz L, Gangi A, Constantinesco A. Osteoblastoma and osteoid osteoma: morphofunctional characterization by MRI and dynamic F-18 FDG PET/CT before and after radiofrequency ablation. Clin Nucl Med 2009; 34 (03) 184-188
  • 83 Sharma P, Mukherjee A, Karunanithi S. , et al. 99mTc-Methylene diphosphonate SPECT/CT as the one-stop imaging modality for the diagnosis of osteoid osteoma. Nucl Med Commun 2014; 35 (08) 876-883
  • 84 DiCaprio MR, Roberts TT. Diagnosis and management of Langerhans cell histiocytosis. J Am Acad Orthop Surg 2014; 22 (10) 643-652
  • 85 Schmidt S, Eich G, Geoffray A. , et al. Extraosseous Langerhans cell histiocytosis in children. Radiographics 2008; 28 (03) 707-726 ; quiz 910–911
  • 86 Dogan AS, Conway JJ, Miller JH, Grier D, Bhattathiry MM, Mitchell CS. Detection of bone lesions in Langerhans cell histiocytosis: complementary roles of scintigraphy and conventional radiography. J Pediatr Hematol Oncol 1996; 18 (01) 51-58
  • 87 Lee HJ, Ahn BC, Lee SW, Lee J. The usefulness of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in patients with Langerhans cell histiocytosis. Ann Nucl Med 2012; 26 (09) 730-737
  • 88 Phillips M, Allen C, Gerson P, McClain K. Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr Blood Cancer 2009; 52 (01) 97-101
  • 89 Ries LAG, Smith MA, Gurney JG. , et al , eds. Cancer incidence and survival among children and adolescents: U.S. SEER program 1975–1995. Bethesda, MD: National Cancer Institute; 1999. . NIH publication 99-4649
  • 90 Gurney JG, Young Jr JL, Roffers SD. Soft tissue sarcomas in cancer incidence and survival among children and adolescents. In: Ries LAG, Smith MA, Gurney JG. , et al, eds. Cancer incidence and survival among children and adolescents: U.S. SEER program 1975–1995. Bethesda, MD: National Cancer Institute; 1999: 99 . NIH publication 99-4649
  • 91 Womer RB, West DC, Krailo MD. , et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol 2012; 30 (33) 4148-4154
  • 92 Meyers PA, Heller G, Healey J. , et al. Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol 1992; 10 (01) 5-15
  • 93 Kempf-Bielack B, Bielack SS, Jürgens H. , et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol 2005; 23 (03) 559-568
  • 94 Grier HE, Krailo MD, Tarbell NJ. , et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 2003; 348 (08) 694-701
  • 95 Harrison DJ, Parisi MT, Shulkin BL. The role of 18F-FDG-PET/CT in pediatric sarcoma. Semin Nucl Med 2017; 47 (03) 229-241
  • 96 Borinstein SC, Steppan D, Hayashi M. , et al. Consensus and controversies regarding the treatment of rhabdomyosarcoma. Pediatr Blood Cancer 2018;65(02). Epub 2017 Sep 14
  • 97 Arndt CA, Stoner JA, Hawkins DS. , et al. Vincristine, actinomycin, and cyclophosphamide compared with vincristine, actinomycin, and cyclophosphamide alternating with vincristine, topotecan, and cyclophosphamide for intermediate-risk rhabdomyosarcoma: children's oncology group study D9803. J Clin Oncol 2009; 27 (31) 5182-5188
  • 98 Breneman JC, Lyden E, Pappo AS. , et al. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma—a report from the Intergroup Rhabdomyosarcoma Study IV. J Clin Oncol 2003; 21 (01) 78-84
  • 99 Walterhouse DO, Pappo AS, Meza JL. , et al. Shorter-duration therapy using vincristine, dactinomycin, and lower-dose cyclophosphamide with or without radiotherapy for patients with newly diagnosed low-risk rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. J Clin Oncol 2014; 32 (31) 3547-3552
  • 100 Pratt CB, Pappo AS, Gieser P. , et al. Role of adjuvant chemotherapy in the treatment of surgically resected pediatric nonrhabdomyosarcomatous soft tissue sarcomas: a Pediatric Oncology Group Study. J Clin Oncol 1999; 17 (04) 1219
  • 101 Byun BH, Kong CB, Lim I. , et al. Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skeletal Radiol 2013; 42 (12) 1673-1681
  • 102 Hurley C, McCarville MB, Shulkin BL. , et al. Comparison of (18) F-FDG-PET-CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma. Pediatr Blood Cancer 2016; 63 (08) 1381-1386
  • 103 Newman EN, Jones RL, Hawkins DS. An evaluation of [F-18]-fluorodeoxy-D-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma. Pediatr Blood Cancer 2013; 60 (07) 1113-1117
  • 104 Treglia G, Salsano M, Stefanelli A, Mattoli MV, Giordano A, Bonomo L. Diagnostic accuracy of 18F-FDG-PET and PET/CT in patients with Ewing sarcoma family tumours: a systematic review and a meta-analysis. Skeletal Radiol 2012; 41 (03) 249-256
  • 105 Völker T, Denecke T, Steffen I. , et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 2007; 25 (34) 5435-5441
  • 106 Eugene T, Corradini N, Carlier T, Dupas B, Leux C, Bodet-Milin C. 18F-FDG-PET/CT in initial staging and assessment of early response to chemotherapy of pediatric rhabdomyosarcomas. Nucl Med Commun 2012; 33 (10) 1089-1095
  • 107 Federico SM, Spunt SL, Krasin MJ. , et al. Comparison of PET-CT and conventional imaging in staging pediatric rhabdomyosarcoma. Pediatr Blood Cancer 2013; 60 (07) 1128-1134
  • 108 Norman G, Fayter D, Lewis-Light K. , et al. An emerging evidence base for PET-CT in the management of childhood rhabdomyosarcoma: systematic review. BMJ Open 2015; 5 (01) e006030
  • 109 Arora VC, Price AP, Fleming S. , et al. Characteristic imaging features of desmoplastic small round cell tumour. Pediatr Radiol 2013; 43 (01) 93-102
  • 110 Ostermeier A, McCarville MB, Navid F, Snyder SE, Shulkin BL. FDG PET/CT imaging of desmoplastic small round cell tumor: findings at staging, during treatment and at follow-up. Pediatr Radiol 2015; 45 (09) 1308-1315
  • 111 Park JR, Bagatell R, London WB. , et al; COG Neuroblastoma Committee. Children's Oncology Group's 2013 blueprint for research: neuroblastoma. Pediatr Blood Cancer 2013; 60 (06) 985-993
  • 112 Yanik GA, Parisi MT, Shulkin BL. , et al. Semiquantitative mIBG scoring as a prognostic indicator in patients with stage 4 neuroblastoma: a report from the Children's oncology group. J Nucl Med 2013; 54 (04) 541-548
  • 113 Jadvar H, Connolly LP, Fahey FH, Shulkin BL. PET and PET/CT in pediatric oncology. Semin Nucl Med 2007; 37 (05) 316-331
  • 114 Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 2009; 50 (08) 1237-1243
  • 115 Paydas S, Zorludemir S, Ergin M. Granulocytic sarcoma: 32 cases and review of the literature. Leuk Lymphoma 2006; 47 (12) 2527-2541
  • 116 Støve HK, Sandahl JD, Abrahamsson J. , et al. Extramedullary leukemia in children with acute myeloid leukemia: a population-based cohort study from the Nordic Society of Pediatric Hematology and Oncology (NOPHO). Pediatr Blood Cancer 2017;64(12)
  • 117 Elojeimy S, Luana Stanescu A, Parisi MT. Use of 18F-FDG PET-CT for detection of active disease in acute myeloid leukemia. Clin Nucl Med 2016; 41 (03) e137-e140
  • 118 Lee EY, Anthony MP, Leung AY, Loong F, Khong PL. Utility of FDG PET/CT in the assessment of myeloid sarcoma. AJR Am J Roentgenol 2012; 198 (05) 1175-1179
  • 119 Stölzel F, Röllig C, Radke J. , et al. 18F-FDG-PET/CT for detection of extramedullary acute myeloid leukemia. Haematologica 2011; 96 (10) 1552-1556
  • 120 Friedberg JW, Fischman A, Neuberg D. , et al. FDG-PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison. Leuk Lymphoma 2004; 45 (01) 85-92
  • 121 Lin P, Chu J, Kneebone A. , et al. Direct comparison of 18F-fluorodeoxyglucose coincidence gamma camera tomography with gallium scanning for the staging of lymphoma. Intern Med J 2005; 35 (02) 91-96
  • 122 Yamamoto F, Tsukamoto E, Nakada K. , et al. 18F-FDG PET is superior to 67Ga SPECT in the staging of non-Hodgkin's lymphoma. Ann Nucl Med 2004; 18 (06) 519-526
  • 123 Cheson BD, Fisher RI, Barrington SF. , et al; Alliance, Australasian Leukaemia and Lymphoma Group; Eastern Cooperative Oncology Group; European Mantle Cell Lymphoma Consortium; Italian Lymphoma Foundation; European Organisation for Research; Treatment of Cancer/Dutch Hemato-Oncology Group; Grupo Español de Médula Ósea; German High-Grade Lymphoma Study Group; German Hodgkin's Study Group; Japanese Lymphoma Study Group; Lymphoma Study Association; NCIC Clinical Trials Group; Nordic Lymphoma Study Group; Southwest Oncology Group; United Kingdom National Cancer Research Institute. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 2014; 32 (27) 3059-3068
  • 124 Bortot DC, Amorim BJ, Oki GC. , et al. 18F-Fluoride PET/CT is highly effective for excluding bone metastases even in patients with equivocal bone scintigraphy. Eur J Nucl Med Mol Imaging 2012; 39 (11) 1730-1736
  • 125 Damle NA, Bal C, Bandopadhyaya GP. , et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 2013; 31 (04) 262-269
  • 126 Even-Sapir E, Metser U, Flusser G. , et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 2004; 45 (02) 272-278
  • 127 Iagaru A, Mittra E, Mosci C. , et al. Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med 2013; 54 (02) 176-183
  • 128 Tateishi U, Morita S, Taguri M. , et al. A meta-analysis of (18)F-Fluoride positron emission tomography for assessment of metastatic bone tumor. Ann Nucl Med 2010; 24 (07) 523-531
  • 129 Peltola H, Pääkkönen M. Acute osteomyelitis in children. N Engl J Med 2014; 370 (04) 352-360
  • 130 Grammatico-Guillon L, Maakaroun Vermesse Z, Baron S, Gettner S, Rusch E, Bernard L. Paediatric bone and joint infections are more common in boys and toddlers: a national epidemiology study. Acta Paediatr 2013; 102 (03) e120-e125
  • 131 van Schuppen J, van Doorn MM, van Rijn RR. Childhood osteomyelitis: imaging characteristics. Insights Imaging 2012; 3 (05) 519-533
  • 132 Jaramillo D, Treves ST, Kasser JR, Harper M, Sundel R, Laor T. Osteomyelitis and septic arthritis in children: appropriate use of imaging to guide treatment. AJR Am J Roentgenol 1995; 165 (02) 399-403
  • 133 Pineda C, Vargas A, Rodríguez AV. Imaging of osteomyelitis: current concepts. Infect Dis Clin North Am 2006; 20 (04) 789-825
  • 134 Harik NS, Smeltzer MS. Management of acute hematogenous osteomyelitis in children. Expert Rev Anti Infect Ther 2010; 8 (02) 175-181
  • 135 Pineda C, Espinosa R, Pena A. Radiographic imaging in osteomyelitis: the role of plain radiography, computed tomography, ultrasonography, magnetic resonance imaging, and scintigraphy. Semin Plast Surg 2009; 23 (02) 80-89
  • 136 Jaramillo D. Infection: musculoskeletal. Pediatr Radiol 2011; 41 (Suppl. 01) S127-S134
  • 137 Kan JH, Young RS, Yu C, Hernanz-Schulman M. Clinical impact of gadolinium in the MRI diagnosis of musculoskeletal infection in children. Pediatr Radiol 2010; 40 (07) 1197-1205
  • 138 Connolly LP, Connolly SA, Drubach LA, Jaramillo D, Treves ST. Acute hematogenous osteomyelitis of children: assessment of skeletal scintigraphy-based diagnosis in the era of MRI. J Nucl Med 2002; 43 (10) 1310-1316
  • 139 Maurer AH, Chen DC, Camargo EE, Wong DF, Wagner Jr HN, Alderson PO. Utility of three-phase skeletal scintigraphy in suspected osteomyelitis: concise communication. J Nucl Med 1981; 22 (11) 941-949
  • 140 Jones DC, Cady RB. “Cold” bone scans in acute osteomyelitis. J Bone Joint Surg Br 1981; 63-B (03) 376-378
  • 141 Signore A, Glaudemans AWJM, Gheysens O, Lauri C, Catalano OA. Nuclear medicine imaging in pediatric infection or chronic inflammatory diseases. Semin Nucl Med 2017; 47 (03) 286-303
  • 142 Strobel K, Stumpe KD. PET/CT in musculoskeletal infection. Semin Musculoskelet Radiol 2007; 11 (04) 353-364
  • 143 Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK. Infection imaging using whole-body FDG-PET. Eur J Nucl Med 2000; 27 (07) 822-832
  • 144 Yeo A, Ramachandran M. Acute haematogenous osteomyelitis in children. BMJ 2014; 348: g66
  • 145 Dalton GP, Drummond DS, Davidson RS, Robertson Jr WW. Bone infarction versus infection in sickle cell disease in children. J Pediatr Orthop 1996; 16 (04) 540-544
  • 146 Kim HC, Alavi A, Russell MO, Schwartz E. Differentiation of bone and bone marrow infarcts from osteomyelitis in sickle cell disorders. Clin Nucl Med 1989; 14 (04) 249-254
  • 147 Rao S, Solomon N, Miller S, Dunn E. Scintigraphic differentiation of bone infarction from osteomyelitis in children with sickle cell disease. J Pediatr 1985; 107 (05) 685-688
  • 148 Berger E, Saunders N, Wang L, Friedman JN. Sickle cell disease in children: differentiating osteomyelitis from vaso-occlusive crisis. Arch Pediatr Adolesc Med 2009; 163 (03) 251-255
  • 149 Skaggs DL, Kim SK, Greene NW, Harris D, Miller JH. Differentiation between bone infarction and acute osteomyelitis in children with sickle-cell disease with use of sequential radionuclide bone-marrow and bone scans. J Bone Joint Surg Am 2001; 83-A (12) 1810-1813
  • 150 de Winter F, van de Wiele C, Vogelaers D, de Smet K, Verdonk R, Dierckx RA. Fluorine-18 fluorodeoxyglucose-position emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am 2001; 83-A (05) 651-660
  • 151 Chacko TK, Zhuang H, Nakhoda KZ, Moussavian B, Alavi A. Applications of fluorodeoxyglucose positron emission tomography in the diagnosis of infection. Nucl Med Commun 2003; 24 (06) 615-624
  • 152 Guhlmann A, Brecht-Krauss D, Suger G. , et al. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 1998; 206 (03) 749-754
  • 153 Meller J, Köster G, Liersch T. , et al. Chronic bacterial osteomyelitis: prospective comparison of (18)F-FDG imaging with a dual-head coincidence camera and (111)In-labelled autologous leucocyte scintigraphy. Eur J Nucl Med Mol Imaging 2002; 29 (01) 53-60
  • 154 Iyer RS, Thapa MM, Chew FS. Chronic recurrent multifocal osteomyelitis: review. review AJR Am J Roentgenol 2011; 196 (6, Suppl): S87-S91
  • 155 Khanna G, Sato TS, Ferguson P. Imaging of chronic recurrent multifocal osteomyelitis. Radiographics 2009; 29 (04) 1159-1177
  • 156 Bjorkstén B, Boquist L. Histopathological aspects of chronic recurrent multifocal osteomyelitis. J Bone Joint Surg Br 1980; 62 (03) 376-380
  • 157 Cyrlak D, Pais MJ. Chronic recurrent multifocal osteomyelitis. Skeletal Radiol 1986; 15 (01) 32-39
  • 158 King SM, Laxer RM, Manson D, Gold R. Chronic recurrent multifocal osteomyelitis: a noninfectious inflammatory process. Pediatr Infect Dis J 1987; 6 (10) 907-911
  • 159 Fritz J, Tzaribatchev N, Claussen CD, Carrino JA, Horger MS. Chronic recurrent multifocal osteomyelitis: comparison of whole-body MR imaging with radiography and correlation with clinical and laboratory data. Radiology 2009; 252 (03) 842-851
  • 160 Mandell GA, Contreras SJ, Conard K, Harcke HT, Maas KW. Bone scintigraphy in the detection of chronic recurrent multifocal osteomyelitis. J Nucl Med 1998; 39 (10) 1778-1783