Semin Reprod Med 2017; 35(06): 487-493
DOI: 10.1055/s-0037-1607268
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Mechanical Signaling and Extracellular Matrix in Uterine Fibroids

Saima Rafique
1   Department of Obstetrics and Gynecology, Howard University Hospital, Washington, District of Columbia
,
James H. Segars
2   Howard W. and Georgeanna Seegar Jones Laboratory of Reproductive Sciences and Women's Health Research, Department of Obstetrics and Gynecology, Johns Hopkins Medical University, Baltimore, Maryland
,
Phyllis C. Leppert
3   Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina
› Author Affiliations
Further Information

Publication History

Publication Date:
03 November 2017 (online)

Abstract

Fibroids (uterine leiomyomas) are the most common benign tumors of the female reproductive tract. Steroid hormones, growth factors, and cytokines have long been implicated in fibroid growth; however, research suggests that changes in the extracellular matrix and mechanical signaling play a critical role in fibroid growth and differentiation. Studies have shown that growth of fibroids is related to the change in the volume and composition of extracellular matrix with increased deposition of abnormal collagen, glycoproteins, laminins, fibronectins, and an increased osmotic stress. These changes generate mechanical stress which is converted to chemical signals in the cells through mechanotransduction and eventually affects gene expression and protein synthesis. Current studies also suggest that mechanical signaling in fibroid cells is abnormal as evidenced by decreased apoptosis of abnormal cells and deposition of a stiff extracellular matrix promoting fibrosis. Understanding and defining these mechanisms could help design new therapies for the treatment of fibroids.

 
  • References

  • 1 Flake GP, Andersen J, Dixon D. Etiology and pathogenesis of uterine leiomyomas: a review. Environ Health Perspect 2003; 111 (08) 1037-1054
  • 2 Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol 2003; 188 (01) 100-107
  • 3 Marshall LM, Spiegelman D, Barbieri RL. , et al. Variation in the incidence of uterine leiomyoma among premenopausal women by age and race. Obstet Gynecol 1997; 90 (06) 967-973
  • 4 Wise LA, Laughlin-Tommaso SK. Epidemiology of uterine fibroids: from menarche to menopause. Clin Obstet Gynecol 2016; 59 (01) 2-24
  • 5 Bartels CB, Cayton KC, Chuong FS. , et al. An evidence-based approach to the medical management of fibroids: a systematic review. Clin Obstet Gynecol 2016; 59 (01) 30-52
  • 6 Moroni R, Vieira C, Ferriani R, Candido-Dos-Reis F, Brito L. Pharmacological treatment of uterine fibroids. Ann Med Health Sci Res 2014; 4 (Suppl. 03) S185-S192
  • 7 Donnez J, Tatarchuk TF, Bouchard P. , et al; PEARL I Study Group. Ulipristal acetate versus placebo for fibroid treatment before surgery. N Engl J Med 2012; 366 (05) 409-420
  • 8 West CP, Lumsden MA, Lawson S, Williamson J, Baird DT. Shrinkage of uterine fibroids during therapy with goserelin (Zoladex): a luteinizing hormone-releasing hormone agonist administered as a monthly subcutaneous depot. Fertil Steril 1987; 48 (01) 45-51
  • 9 Fujita M. [Histological and biochemical studies of collagen in human uterine leiomyomas]. Hokkaido Igaku Zasshi 1985; 60 (04) 602-615
  • 10 Leppert PC, Baginski T, Prupas C, Catherino WH, Pletcher S, Segars JH. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril 2004; 82 (Suppl. 03) 1182-1187
  • 11 Ingber DE. Tensegrity and mechanotransduction. J Bodyw Mov Ther 2008; 12 (03) 198-200
  • 12 Mammoto T, Ingber DE. Mechanical control of tissue and organ development. Development 2010; 137 (09) 1407-1420
  • 13 Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260 (5111): 1124-1127
  • 14 Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression?. J Theor Biol 1982; 99 (01) 31-68
  • 15 Miyamoto S, Teramoto H, Coso OA. , et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 1995; 131 (03) 791-805
  • 16 Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110 (06) 673-687
  • 17 Mammoto T, Mammoto A, Ingber DE. Mechanobiology and developmental control. Annu Rev Cell Dev Biol 2013; 29: 27-61
  • 18 Paszek MJ, Zahir N, Johnson KR. , et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005; 8 (03) 241-254
  • 19 Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol 2015; 33 (04) 230-236
  • 20 Iwahashi M, Muragaki Y. Increased type I and V collagen expression in uterine leiomyomas during the menstrual cycle. Fertil Steril 2011; 95 (06) 2137-2139
  • 21 Stewart EA, Friedman AJ, Peck K, Nowak RA. Relative overexpression of collagen type I and collagen type III messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab 1994; 79 (03) 900-906
  • 22 Berto AG, Oba SM, Michelacci YM, Sampaio LO. Galactosaminoglycans from normal myometrium and leiomyoma. Braz J Med Biol Res 2001; 34 (05) 633-637
  • 23 Kresse H, Schönherr E. Proteoglycans of the extracellular matrix and growth control. J Cell Physiol 2001; 189 (03) 266-274
  • 24 Sugahara K, Masuda M, Harada T, Yamashina I, de Waard P, Vliegenthart JF. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin sulfate proteoglycans of whale cartilage. Eur J Biochem 1991; 202 (03) 805-811
  • 25 Schönherr E, Hausser H, Beavan L, Kresse H. Decorin-type I collagen interaction. Presence of separate core protein-binding domains. J Biol Chem 1995; 270 (15) 8877-8883
  • 26 Scott JE, Orford CR. Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region. Biochem J 1981; 197 (01) 213-216
  • 27 Riquelme C, Larrain J, Schonherr E, Henriquez JP, Kresse H, Brandan E. Antisense inhibition of decorin expression in myoblasts decreases cell responsiveness to transforming growth factor beta and accelerates skeletal muscle differentiation. J Biol Chem 2001; 276 (05) 3589-3596
  • 28 Takeda U, Utani A, Wu J. , et al. Targeted disruption of dermatopontin causes abnormal collagen fibrillogenesis. J Invest Dermatol 2002; 119 (03) 678-683
  • 29 Catherino WH, Leppert PC, Stenmark MH. , et al. Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer 2004; 40 (03) 204-217
  • 30 Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 2002; 14 (05) 617-623
  • 31 Westergren-Thorsson G, Norman M, Björnsson S. , et al. Differential expressions of mRNA for proteoglycans, collagens and transforming growth factor-beta in the human cervix during pregnancy and involution. Biochim Biophys Acta 1998; 1406 (02) 203-213
  • 32 Ricciardelli C, Quinn DI, Raymond WA. , et al. Elevated levels of peritumoral chondroitin sulfate are predictive of poor prognosis in patients treated by radical prostatectomy for early-stage prostate cancer. Cancer Res 1999; 59 (10) 2324-2328
  • 33 Norian JM, Malik M, Parker CY. , et al. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci 2009; 16 (12) 1153-1164
  • 34 Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990; 6: 597-641
  • 35 Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2007; 293 (03) L525-L534
  • 36 Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 2006; 69 (02) 213-217
  • 37 Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab 2001; 86 (02) 913-920
  • 38 Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril 2000; 73 (05) 1006-1011
  • 39 Malik M, Catherino WH. Novel method to characterize primary cultures of leiomyoma and myometrium with the use of confirmatory biomarker gene arrays. Fertil Steril 2007; 87 (05) 1166-1172
  • 40 Wolańska M, Sobolewski K, Drozdzewicz M, Bańkowski E. Extracellular matrix components in uterine leiomyoma and their alteration during the tumour growth. Mol Cell Biochem 1998; 189 (1-2): 145-152
  • 41 Cramer SF, Horiszny J, Patel A, Sigrist S. The relation of fibrous degeneration to menopausal status in small uterine leiomyomas with evidence for postmenopausal origin of seedling myomas. Mod Pathol 1996; 9 (07) 774-780
  • 42 Curry Jr TE, Osteen KG. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev 2003; 24 (04) 428-465
  • 43 Joseph DS, Malik M, Nurudeen S, Catherino WH. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor beta-3. Fertil Steril 2010; 93 (05) 1500-1508
  • 44 Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J 2006; 20 (07) 811-827
  • 45 Rogers R, Norian J, Malik M. , et al. Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol 2008; 198 (04) 474.e1-474.e11
  • 46 Burg MB, Ferraris JD, Dmitrieva NI. Cellular response to hyperosmotic stresses. Physiol Rev 2007; 87 (04) 1441-1474
  • 47 López-Rodríguez C, Antos CL, Shelton JM. , et al. Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proc Natl Acad Sci U S A 2004; 101 (08) 2392-2397
  • 48 Burg MB, Kwon ED, Kültz D. Regulation of gene expression by hypertonicity. Annu Rev Physiol 1997; 59: 437-455
  • 49 Garcia-Perez A, Burg MB. Renal medullary organic osmolytes. Physiol Rev 1991; 71 (04) 1081-1115
  • 50 McCarthy-Keith DM, Malik M, Britten J, Segars J, Catherino WH. Gonadotropin-releasing hormone agonist increases expression of osmotic response genes in leiomyoma cells. Fertil Steril 2011; 95 (07) 2383-2387
  • 51 Juliano RL. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 2002; 42: 283-323
  • 52 Arao S, Masumoto A, Otsuki M. Beta1 integrins play an essential role in adhesion and invasion of pancreatic carcinoma cells. Pancreas 2000; 20 (02) 129-137
  • 53 Zaidel-Bar R, Itzkovitz S, Ma'ayan A, Iyengar R, Geiger B. Functional atlas of the integrin adhesome. Nat Cell Biol 2007; 9 (08) 858-867
  • 54 Malik M, Segars J, Catherino WH. Integrin β1 regulates leiomyoma cytoskeletal integrity and growth. Matrix Biol 2012; 31 (7-8): 389-397
  • 55 Chen HM, Lin YH, Cheng YM, Wing LY, Tsai SJ. Overexpression of integrin-β1 in leiomyoma promotes cell spreading and proliferation. J Clin Endocrinol Metab 2013; 98 (05) E837-E846
  • 56 Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70 (03) 389-399
  • 57 Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med (Berl) 2002; 80 (10) 629-638
  • 58 Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D. Substrate compliance versus ligand density in cell on gel responses. Biophys J 2004; 86 (1, Pt 1): 617-628
  • 59 Norian JM, Owen CM, Taboas J. , et al. Characterization of tissue biomechanics and mechanical signaling in uterine leiomyoma. Matrix Biol 2012; 31 (01) 57-65
  • 60 Miller BT, Rubino DM, Driggers PH. , et al. Expression of brx proto-oncogene in normal ovary and in epithelial ovarian neoplasms. Am J Obstet Gynecol 2000; 182 (02) 286-295
  • 61 Carnegie GK, Means CK, Scott JD. A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB Life 2009; 61 (04) 394-406
  • 62 Paszek MJ, Weaver VM. The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 2004; 9 (04) 325-342
  • 63 Koohestani F, Braundmeier AG, Mahdian A, Seo J, Bi J, Nowak RA. Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells. PLoS One 2013; 8 (09) e75844
  • 64 Taylor DK, Leppert PC. Treatment for uterine fibroids: searching for effective drug therapies. Drug Discov Today Ther Strateg 2012; 9 (01) e41-e49
  • 65 Nakazawa M, Yoshimura T, Naito J, Azuma H. [Pharmacological properties of N-(3′,4′-dimethoxycinnamoyl) anthranilic acid (N-5′), a new anti-atopic agent. (4).--Anti-inflammatory activity of N-5′ (author's transl)]. Nippon Yakurigaku Zasshi 1978; 74 (04) 473-481
  • 66 Yamada H, Tajima S, Nishikawa T, Murad S, Pinnell SR. Tranilast, a selective inhibitor of collagen synthesis in human skin fibroblasts. J Biochem 1994; 116 (04) 892-897
  • 67 Darakhshan S, Pour AB. Tranilast: a review of its therapeutic applications. Pharmacol Res 2015; 91: 15-28
  • 68 Rogosnitzky M, Danks R, Kardash E. Therapeutic potential of tranilast, an anti-allergy drug, in proliferative disorders. Anticancer Res 2012; 32 (07) 2471-2478
  • 69 Shime H, Kariya M, Orii A. , et al. Tranilast inhibits the proliferation of uterine leiomyoma cells in vitro through G1 arrest associated with the induction of p21(waf1) and p53. J Clin Endocrinol Metab 2002; 87 (12) 5610-5617
  • 70 Islam MS, Protic O, Ciavattini A. , et al. Tranilast, an orally active antiallergic compound, inhibits extracellular matrix production in human uterine leiomyoma and myometrial cells. Fertil Steril 2014; 102 (02) 597-606
  • 71 Chuang TD, Khorram O. Tranilast inhibits genes functionally involved in cell proliferation, fibrosis, and epigenetic regulation and epigenetically induces miR-29c expression in leiomyoma cells. Reprod Sci 2017; 24 (09) 1253-1263
  • 72 Fukushima M, Nakamuta M, Kohjima M. , et al. Fasudil hydrochloride hydrate, a Rho-kinase (ROCK) inhibitor, suppresses collagen production and enhances collagenase activity in hepatic stellate cells. Liver Int 2005; 25 (04) 829-838
  • 73 Guan R, Xu X, Chen M. , et al. Advances in the studies of roles of Rho/Rho-kinase in diseases and the development of its inhibitors. Eur J Med Chem 2013; 70: 613-622
  • 74 Malik M, Britten J, Segars J, Catherino WH. Leiomyoma cells in 3-dimensional cultures demonstrate an attenuated response to fasudil, a rho-kinase inhibitor, when compared to 2-dimensional cultures. Reprod Sci 2014; 21 (09) 1126-1138
  • 75 Jayes FL, Liu B, Moutos FT, Kuchibhatla M, Guilak F, Leppert PC. Loss of stiffness in collagen-rich uterine fibroids after digestion with purified collagenase Clostridium histolyticum. Am J Obstet Gynecol 2016; 215 (05) 596.e1-596.e8
  • 76 Holzer LA, Holzer G. Injectable collagenase clostridium histolyticum for Dupuytren's contracture. N Engl J Med 2009; 361 (26) 2579 , author reply 2579–2580
  • 77 Honig SC. Intralesional collagenase in the treatment of Peyronie's disease. Ther Adv Urol 2014; 6 (02) 47-53
  • 78 French MF, Mookhtiar KA, Van Wart HE. Limited proteolysis of type I collagen at hyperreactive sites by class I and II Clostridium histolyticum collagenases: complementary digestion patterns. Biochemistry 1987; 26 (03) 681-687
  • 79 Brunengraber LN, Jayes FL, Leppert PC. Injectable Clostridium histolyticum collagenase as a potential treatment for uterine fibroids. Reprod Sci 2014; 21 (12) 1452-1459
  • 80 Catherino WH, Malik M. Uterine leiomyomas express a molecular pattern that lowers retinoic acid exposure. Fertil Steril 2007; 87 (06) 1388-1398
  • 81 Levy G, Malik M, Britten J, Gilden M, Segars J, Catherino WH. Liarozole inhibits transforming growth factor-β3--mediated extracellular matrix formation in human three-dimensional leiomyoma cultures. Fertil Steril 2014; 102 (01) 272-281.e2
  • 82 Sabry M, Halder SK, Allah AS, Roshdy E, Rajaratnam V, Al-Hendy A. Serum vitamin D3 level inversely correlates with uterine fibroid volume in different ethnic groups: a cross-sectional observational study. Int J Womens Health 2013; 5: 93-100
  • 83 Baird DD, Hill MC, Schectman JM, Hollis BW. Vitamin d and the risk of uterine fibroids. Epidemiology 2013; 24 (03) 447-453
  • 84 Ylikomi T, Laaksi I, Lou YR. , et al. Antiproliferative action of vitamin D. Vitam Horm 2002; 64: 357-406
  • 85 Halder SK, Goodwin JS, Al-Hendy A. 1,25-Dihydroxyvitamin D3 reduces TGF-beta3-induced fibrosis-related gene expression in human uterine leiomyoma cells. J Clin Endocrinol Metab 2011; 96 (04) E754-E762
  • 86 Halder SK, Osteen KG, Al-Hendy A. 1,25-dihydroxyvitamin d3 reduces extracellular matrix-associated protein expression in human uterine fibroid cells. Biol Reprod 2013; 89 (06) 150
  • 87 Pines M, Snyder D, Yarkoni S, Nagler A. Halofuginone to treat fibrosis in chronic graft-versus-host disease and scleroderma. Biol Blood Marrow Transplant 2003; 9 (07) 417-425
  • 88 Nagler A, Firman N, Feferman R, Cotev S, Pines M, Shoshan S. Reduction in pulmonary fibrosis in vivo by halofuginone. Am J Respir Crit Care Med 1996; 154 (4, Pt 1): 1082-1086
  • 89 Adegunsoye A, Strek ME. Therapeutic approach to adult fibrotic lung diseases. Chest 2016; 150 (06) 1371-1386
  • 90 Lee BS, Margolin SB, Nowak RA. Pirfenidone: a novel pharmacological agent that inhibits leiomyoma cell proliferation and collagen production. J Clin Endocrinol Metab 1998; 83 (01) 219-223
  • 91 Grudzien MM, Low PS, Manning PC, Arredondo M, Belton Jr RJ, Nowak RA. The antifibrotic drug halofuginone inhibits proliferation and collagen production by human leiomyoma and myometrial smooth muscle cells. Fertil Steril 2010; 93 (04) 1290-1298
  • 92 Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 2003; 23 (1A): 363-398
  • 93 Malik M, Mendoza M, Payson M, Catherino WH. Curcumin, a nutritional supplement with antineoplastic activity, enhances leiomyoma cell apoptosis and decreases fibronectin expression. Fertil Steril 2009; 91 (5, Suppl): 2177-2184