Neuropediatrics 2017; 48(05): 340-349
DOI: 10.1055/s-0037-1603979
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Pitfalls in Diffusion-Weighted and Diffusion Tensor Imaging of the Pediatric Brain

Nivedita Agarwal
1   Department of Radiology, Hospital of Santa Maria del Carmine,Azienda Provinciale per i Servizi Sanitari, Rovereto, Trento, Italy
2   Section of Pediatric Neuroradiology, Division of pediatric Radiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States
,
Aylin Tekes
2   Section of Pediatric Neuroradiology, Division of pediatric Radiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States
,
Andrea Poretti
2   Section of Pediatric Neuroradiology, Division of pediatric Radiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States
,
Avner Meoded
2   Section of Pediatric Neuroradiology, Division of pediatric Radiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States
3   Department of Radiology Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
,
Thierry A.G.M. Huisman
2   Section of Pediatric Neuroradiology, Division of pediatric Radiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States
› Author Affiliations
Further Information

Publication History

20 March 2017

10 May 2017

Publication Date:
06 July 2017 (online)

Abstract

Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced magnetic resonance imaging (MRI) techniques that are based on differences in the diffusion rate of water molecules in brain tissue. DWI and DTI are widely used in pediatric neuroradiology to evaluate a wide spectrum of brain diseases. The interpretation of DWI and DTI images requires a basic knowledge of the underlying physics to detect potential pitfalls and avoid misinterpretation. Several DWI pitfalls are related to the dependency of DWI images not only on the diffusivity of water molecules, but also on various additional MRI phenomena such as the T1- and T2- relaxation characteristics and MRI-related artifacts. In addition, knowledge about the age of the child and interval between the onset of injury and acquisition of DWI/DTI images is important. Finally, qualitative evaluation (“eye-balling”) maybe misleading, and the application of quantitative measurements of DTI scalars may avoid misdiagnosis.

Note

The study was performed at the Johns Hopkins University.


Deceased.


Supplementary Material

 
  • References

  • 1 Huisman TA, Tekes A. Advanced MR brain imaging. Why?. Pediatr Radiol 2008; 38 (Suppl. 03) S415-S432
  • 2 Bosemani T, Poretti A, Huisman TA. Susceptibility-weighted imaging in pediatric neuroimaging. J Magn Reson Imaging 2014; 40 (03) 530-544
  • 3 Huisman TA. Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging 2010; 10 Spec no A (1A): S163-S171
  • 4 Poretti A, Meoded A, Rossi A, Raybaud C, Huisman TA. Diffusion tensor imaging and fiber tractography in brain malformations. Pediatr Radiol 2013; 43 (01) 28-54
  • 5 Huisman TA, Sorensen AG. Perfusion-weighted magnetic resonance imaging of the brain: techniques and application in children. Eur Radiol 2004; 14 (01) 59-72
  • 6 Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging 2015; 41 (05) 1165-1180
  • 7 Proisy M, Bruneau B, Rozel C. , et al. Arterial spin labeling in clinical pediatric imaging. Diagn Interv Imaging 2016; 97 (02) 151-158
  • 8 Ratai EM, Gilberto González R. Clinical magnetic resonance spectroscopy of the central nervous system. Handb Clin Neurol 2016; 135: 93-116
  • 9 Astrakas LG, Argyropoulou MI. Key concepts in MR spectroscopy and practical approaches to gaining biochemical information in children. Pediatr Radiol 2016; 46 (07) 941-951
  • 10 Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 2013; 34 (10) 1866-1872
  • 11 Barkovich AJ, Miller SP, Bartha A. , et al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR Am J Neuroradiol 2006; 27 (03) 533-547
  • 12 Pinto PS, Poretti A, Meoded A, Tekes A, Huisman TA. The unique features of traumatic brain injury in children. Review of the characteristics of the pediatric skull and brain, mechanisms of trauma, patterns of injury, complications and their imaging findings--part 1. J Neuroimaging 2012; 22 (02) e1-e17
  • 13 Rossi A, Gandolfo C, Morana G, Severino M, Garrè ML, Cama A. New MR sequences (diffusion, perfusion, spectroscopy) in brain tumours. Pediatr Radiol 2010; 40 (06) 999-1009
  • 14 Poretti A, Blaser SI, Lequin MH. , et al. Neonatal neuroimaging findings in inborn errors of metabolism. J Magn Reson Imaging 2013; 37 (02) 294-312
  • 15 Huisman TA. Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging 2010; 10 Spec no A (1A): S163-S171
  • 16 Huisman TA. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol 2003; 13 (10) 2283-2297
  • 17 Huisman TA, Bosemani T, Poretti A. Diffusion tensor imaging for brain malformations: does it help?. Neuroimaging Clin N Am 2014; 24 (04) 619-637
  • 18 Poretti A, Meoded A, Huisman TA. Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging 2012; 35 (01) 32-47
  • 19 Nickerson JP, Richner B, Santy K. , et al. Neuroimaging of pediatric intracranial infection--part 1: techniques and bacterial infections. J Neuroimaging 2012; 22 (02) e42-e51
  • 20 Nickerson JP, Richner B, Santy K. , et al. Neuroimaging of pediatric intracranial infection–part 2: TORCH, viral, fungal, and parasitic infections. . J Neuroimaging. 2012; 22 (02) e52-e63
  • 21 Patay Z. Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol 2005; 15 (11) 2284-2303
  • 22 Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161 (02) 401-407
  • 23 Hakyemez B, Aksoy U, Yildiz H, Ergin N. Intracranial epidermoid cysts: diffusion-weighted, FLAIR and conventional MR findings. Eur J Radiol 2005; 54 (02) 214-220
  • 24 Casey S. “T2 washout”: an explanation for normal diffusion-weighted images despite abnormal apparent diffusion coefficient maps. AJNR Am J Neuroradiol 2001; 22 (08) 1450-1451
  • 25 Provenzale JM, Petrella JR, Cruz Jr LC, Wong JC, Engelter S, Barboriak DP. Quantitative assessment of diffusion abnormalities in posterior reversible encephalopathy syndrome. AJNR Am J Neuroradiol 2001; 22 (08) 1455-1461
  • 26 Silvera S, Oppenheim C, Touzé E. , et al. Spontaneous intracerebral hematoma on diffusion-weighted images: influence of T2-shine-through and T2-blackout effects. AJNR Am J Neuroradiol 2005; 26 (02) 236-241
  • 27 Kamal AK, Dyke JP, Katz JM. , et al. Temporal evolution of diffusion after spontaneous supratentorial intracranial hemorrhage. AJNR Am J Neuroradiol 2003; 24 (05) 895-901
  • 28 Khedr SA, Kassem HM, Hazzou AM, Awad E, Fouad MM. MRI diffusion-weighted imaging in intracranial hemorrhage (ICH). The Egyptian J Radiology Nuclear Medicine 2013; 44 (03) 625-634
  • 29 Lee YJ, Lee S, Jang J. , et al. Findings regarding an intracranial hemorrhage on the phase image of a susceptibility-weighted image (SWI), according to the stage, location, and size. Investig Magn Reson Imaging 2015; 19 (02) 107-113
  • 30 Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S. Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 1997; 49 (01) 113-119
  • 31 Matsumoto K, Lo EH, Pierce AR, Wei H, Garrido L, Kowall NW. Role of vasogenic edema and tissue cavitation in ischemic evolution on diffusion-weighted imaging: comparison with multiparameter MR and immunohistochemistry. AJNR Am J Neuroradiol 1995; 16 (05) 1107-1115
  • 32 Bednarek N, Mathur A, Inder T, Wilkinson J, Neil J, Shimony J. Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy. Neurology 2012; 78 (18) 1420-1427
  • 33 Feldman HM, Yeatman JD, Lee ES, Barde LHF, Gaman-Bean S. Diffusion tensor imaging: a review for pediatric researchers and clinicians. J Dev Behav Pediatr 2010; 31 (04) 346-356
  • 34 Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 2008; 29 (04) 632-641
  • 35 Tournier JD, Mori S, Leemans A. Diffusion tensor imaging and beyond. Magn Reson Med 2011; 65 (06) 1532-1556
  • 36 Yoshida S, Oishi K, Faria AV, Mori S. Diffusion tensor imaging of normal brain development. Pediatr Radiol 2013; 43 (01) 15-27
  • 37 Chang LC, Jones DK, Pierpaoli C. RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med 2005; 53 (05) 1088-1095
  • 38 Löbel U, Sedlacik J, Güllmar D, Kaiser WA, Reichenbach JR, Mentzel HJ. Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology 2009; 51 (04) 253-263
  • 39 Cancelliere A, Mangano FT, Air EL. , et al. DTI values in key white matter tracts from infancy through adolescence. AJNR Am J Neuroradiol 2013; 34 (07) 1443-1449
  • 40 Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 2008; 40 (03) 1044-1055
  • 41 Dubois J, Dehaene-Lambertz G, Perrin M. , et al. Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum Brain Mapp 2008; 29 (01) 14-27
  • 42 Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol 2008; 29 (05) 843-852
  • 43 Domin M, Langner S, Hosten N, Lotze M. Comparison of parameter threshold combinations for diffusion tensor tractography in chronic stroke patients and healthy subjects. PLoS One 2014; 9 (05) e98211
  • 44 Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol 2008; 7 (08) 715-727