Semin Musculoskelet Radiol 2017; 21(03): 349-356
DOI: 10.1055/s-0037-1602407
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Percutaneous Treatment of Vertebral Fractures

Mario Muto
1   Department of Neuroradiology, Ospedale A. Cardarelli, Naples, Italy
,
Francesco Giurazza
2   Department of Radiology, Università Campus Bio-Medico, Rome, Italy
,
Gianluigi Guarnieri
1   Department of Neuroradiology, Ospedale A. Cardarelli, Naples, Italy
,
Vittorio Miele
3   Department of Radiology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
,
Stefano Marcia
4   Department of Radiology, Ospedale Santissima Trinità, Cagliari, Italy
,
Salvatore Masala
5   Department of Musculoskeletal Radiology, Università degli Studi Tor Vergata, Rome, Italy
,
Giuseppe Guglielmi
6   Department of Radiology, University of Foggia, Foggia, Italy
7   Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, Foggia, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
01 June 2017 (online)

Abstract

The thoracolumbar junction and lumbosacral segment are the portions of the spinal column most prone to acute traumatic fractures. Multiple classifications and injury severity score systems have been published to standardize the management of patients, establishing stable/unstable and surgical/nonsurgical fractures. In the past, patients could be treated only by surgical stabilization or conservative methods. The latter implied bed rest, long immobilization periods, prolonged drugs therapies, and, at worst, the evolution of kyphosis. Percutaneous mini-invasive treatments have been developed to improve the quality of life of patients affected by stable fractures, by rapidly recovering mobility and preventing deformity of the spinal column. These approaches, based on assisted techniques, imply the placement of different types of expandable bone implant systems. We discuss the treatment of vertebral fractures, focusing on percutaneous procedures and analyzing indications, contraindications, and outcomes of patients affected by vertebral nonosteoporotic/nonneoplastic but traumatic fractures.

 
  • References

  • 1 Hu R, Mustard CA, Burns C. Epidemiology of incident spinal fracture in a complete population. Spine 1996; 21 (04) 492-499
  • 2 Copley P, Tilliridou V, Jamjoom A. Traumatic cervical spine fractures in the adult. Br J Hosp Med (Lond) 2016; 77 (09) 530-535
  • 3 Wood KB, Li W, Lebl DR, Ploumis A. Management of thoracolumbar spine fractures. Spine J 2014; 14 (01) 145-164
  • 4 Phillips FM. Minimal invasive treatment of osteoporotic vertebral compression fractures. Spine 2003; 28 (15S): S45-S53
  • 5 Caffaro MF, Avanzi O. Is there a difference between narrowing of the spinal canal and neurological deficits comparing Denis and Magerl classifications?. Spinal Cord 2011; 49 (02) 297-301
  • 6 Schroeder GD, Harrop JS, Vaccaro AR. Thoracolumbar trauma classification. Neurosurg Clin N Am 2017; 28 (01) 23-29
  • 7 Wintermark M, Mouhsine E, Theumann N. , et al. Thoracolumbar spine fractures in patients who have sustained severe trauma: depiction with multi-detector row CT. Radiology 2003; 227 (03) 681-689
  • 8 Guarnieri G, Izzo R, Muto M. The role of emergency radiology in spinal trauma. Br J Radiol 2016; 89 (1061): 20150833
  • 9 Gamanagatti S, Rathinam D, Rangarajan K, Kumar A, Farooque K, Sharma V. Imaging evaluation of traumatic thoracolumbar spine injuries: Radiological review. World J Radiol 2015; 7 (09) 253-265
  • 10 Koreckij T, Park DK, Fischgrund J. Minimally invasive spine surgery in the treatment of thoracolumbar and lumbar spine trauma. Neurosurg Focus 2014; 37 (01) E11
  • 11 Joaquim AF, Patel AA. Thoracolumbar spine trauma: evaluation and surgical decision-making. J Craniovertebr Junction Spine 2013; 4 (01) 3-9
  • 12 Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983; 8 (08) 817-831
  • 13 Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 1994; 3 (04) 184-201
  • 14 Patel AA, Dailey A, Brodke DS. , et al; Spine Trauma Study Group. Thoracolumbar spine trauma classification: the Thoracolumbar Classification and Severity Score system and case examples. J Neurosurg Spine 2009; 10 (03) 201-206
  • 15 Muto M, Guarnieri G, Giurazza F, Manfrè L. What's new in vertebral cementoplasty?. Br J Radiol 2016; 89 (1059): 20150337
  • 16 Muto M, Marcia S, Guarnieri G, Pereira V. Assisted techniques for vertebral cementoplasty: why should we do it?. Eur J Radiol 2015; 84 (05) 783-788
  • 17 Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty [in French]. Neurochirurgie 1987; 33 (02) 166-168
  • 18 Muto M, Perrotta V, Guarnieri G. , et al. Vertebroplasty and kyphoplasty: friends or foes?. Radiol Med (Torino) 2008; 113 (08) 1171-1184
  • 19 Wang H, Sribastav SS, Ye F. , et al. Comparison of percutaneous vertebroplasty and balloon kyphoplasty for the treatment of single level vertebral compression fractures: a meta-analysis of the literature. Pain Physician 2015; 18 (03) 209-222
  • 20 de Falco R, Bocchetti A. Balloon kyphoplasty for pure traumatic thoracolumbar fractures: retrospective analysis of 61 cases focusing on restoration of vertebral height. Eur Spine J 2014; 23 (Suppl. 06) 664-670
  • 21 Zaryanov AV, Park DK, Khalil JG, Baker KC, Fischgrund JS. Cement augmentation in vertebral burst fractures. Neurosurg Focus 2014; 37 (01) E5
  • 22 Hartmann F, Gercek E, Leiner L, Rommens PM. Kyphoplasty as an alternative treatment of traumatic thoracolumbar burst fractures Magerl type A3. Injury 2012; 43 (04) 409-415
  • 23 Van Meirhaeghe J, Bastian L, Boonen S, Ranstam J, Tillman JB, Wardlaw D. ; FREE investigators. A randomized trial of balloon kyphoplasty and nonsurgical management for treating acute vertebral compression fractures: vertebral body kyphosis correction and surgical parameters. Spine 2013; 38 (12) 971-983
  • 24 Verlaan JJ, van de Kraats EB, Oner FC, van Walsum T, Niessen WJ, Dhert WJ. The reduction of endplate fractures during balloon vertebroplasty: a detailed radiological analysis of the treatment of burst fractures using pedicle screws, balloon vertebroplasty, and calcium phosphate cement. Spine 2005; 30 (16) 1840-1845
  • 25 Tsoumakidou G, Too CW, Koch G. , et al. CIRSE guidelines on percutaneous vertebral augmentation. Cardiovasc Intervent Radiol 2017; 40 (03) 331-342
  • 26 Muto M, Greco B, Setola F, Vassallo P, Ambrosanio G, Guarnieri G. Vertebral body stenting system for the treatment of osteoporotic vertebral compression fracture: follow-up at 12 months in 20 cases. Neuroradiol J 2011; 24 (04) 610-619
  • 27 Hartmann F, Griese M, Dietz SO, Kuhn S, Rommens PM, Gercek E. Two-year results of vertebral body stenting for the treatment of traumatic incomplete burst fractures. Minim Invasive Ther Allied Technol 2015; 24 (03) 161-166
  • 28 Noriega D, Maestretti G, Renaud C. , et al. Clinical performance and safety of 108 SpineJack implantations: 1-year results of a prospective multicentre single-arm registry study. BioMed Res Int 2015; 2015 (15) 173872
  • 29 Rotter R, Schmitt L, Gierer P. , et al. Minimum cement volume required in vertebral body augmentation—a biomechanical study comparing the permanent SpineJack device and balloon kyphoplasty in traumatic fracture. Clin Biomech (Bristol, Avon) 2015; 30 (07) 720-725