J Pediatr Infect Dis 2016; 11(03): 55-64
DOI: 10.1055/s-0036-1597299
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Sepsis and Neonatal Acute Kidney Injury

A. Nillsen
1   Department of Neonatology, Centenary Hospital for Women and Children, Canberra Hospital, Woden, Australia
,
Alison L. Kent
1   Department of Neonatology, Centenary Hospital for Women and Children, Canberra Hospital, Woden, Australia
2   Department of Neonatology, Australian National University Medical School, Canberra, Australia
› Author Affiliations
Further Information

Publication History

03 August 2016

02 September 2016

Publication Date:
19 December 2016 (online)

Abstract

Although the neonatal period is only the first 28 days of life, it accounts globally for in excess of 40% of deaths of children younger than 5 years of age. Sepsis is an important contributor to this burden of neonatal death as well as disease. Sepsis is in addition a leading cause of acute kidney injury (AKI) in neonates. Neonatal AKI independently contributes toward mortality and morbidity with neonates dying because of AKI. The neonates' response to sepsis and AKI is complicated by hemodynamic instability from cardiac and intrapulmonary shunts as well as immature renal function. This review article will examine the at-risk neonatal populations, causes of and risk factors for neonatal sepsis, pathophysiology, fluid overload, prevention, and global perspectives.

 
  • References

  • 1 Liu L, Johnson HL, Cousens S. , et al; Child Health Epidemiology Reference Group of WHO and UNICEF. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012; 379 9832 2151-2161
  • 2 Liu L, Oza S, Hogan D. , et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 2015; 385 9966 430-440
  • 3 Libório AB, Branco KM, Torres de Melo Bezerra C. Acute kidney injury in neonates: from urine output to new biomarkers. BioMed Res Int 2014; 2014: 601568
  • 4 Kriplani DS, Sethna CB, Leisman DE, Schneider JB. Acute kidney injury in neonates in the PICU. Pediatr Crit Care Med 2016; 17 (04) e159-e164
  • 5 Blencowe H, Cousens S, Oestergaard MZ. , et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012; 379 9832 2162-2172
  • 6 Chang HH, Larson J, Blencowe H. , et al; Born Too Soon preterm prevention analysis group. Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index. Lancet 2013; 381 9862 223-234
  • 7 Shane AL, Stoll BJ. Neonatal sepsis: progress towards improved outcomes. J Infect 2014; 68 (Suppl. 01) S24-S32
  • 8 Askenazi DJ, Morgan C, Goldstein SL. , et al. Strategies to improve the understanding of long-term renal consequences after neonatal acute kidney injury. Pediatr Res 2016; 79 (03) 502-508
  • 9 Hanna MH, Askenazi DJ, Selewski DT. Drug-induced acute kidney injury in neonates. Curr Opin Pediatr 2016; 28 (02) 180-187
  • 10 Osathanondh V, Potter EL. Development of human kidney as shown by microdissection. III. Formation and interrelationship of collecting tubules and nephrons. Arch Pathol 1963; 76: 290-302
  • 11 Black MJ, Sutherland MR, Gubhaju L, Kent AL, Dahlstrom JE, Moore L. When birth comes early: effects on nephrogenesis. Nephrology (Carlton) 2013; 18 (03) 180-182
  • 12 DeFreitas MJ, Seeherunvong W, Katsoufis CP. , et al. Longitudinal patterns of urine biomarkers in infants across gestational ages. Pediatr Nephrol 2016; 31 (07) 1179-1188
  • 13 Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE. Human nephron number: implications for health and disease. Pediatr Nephrol 2011; 26 (09) 1529-1533
  • 14 Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 2012; 120 (04) c179-c184
  • 15 Jetton JG, Guillet R, Askenazi DJ. , et al; Neonatal Kidney Collaborative. Assessment of Worldwide Acute Kidney Injury Epidemiology in Neonates: design of a retrospective cohort study. Front Pediatr 2016; 4: 68
  • 16 Momtaz HE, Sabzehei MK, Rasuli B, Torabian S. The main etiologies of acute kidney injury in the newborns hospitalized in the neonatal intensive care unit. J Clin Neonatol 2014; 3 (02) 99-102
  • 17 El-Badawy AA, Makar S, Abdel-Razek AR, Abd Elaziz D. Incidence and risk factors of acute kidney injury among the critically ill neonates. Saudi J Kidney Dis Transpl 2015; 26 (03) 549-555
  • 18 Duzova A, Bakkaloglu A, Kalyoncu M. , et al; Turkish Society for Pediatric Nephrology Acute Kidney Injury Study Group. Etiology and outcome of acute kidney injury in children. Pediatr Nephrol 2010; 25 (08) 1453-1461
  • 19 Youssef D, Abd-Elrahman H, Shehab MM, Abd-Elrheem M. Incidence of acute kidney injury in the neonatal intensive care unit. Saudi J Kidney Dis Transpl 2015; 26 (01) 67-72
  • 20 Vachvanichsanong P, McNeil E, Dissaneevate S, Dissaneewate P, Chanvitan P, Janjindamai W. Neonatal acute kidney injury in a tertiary center in a developing country. Nephrol Dial Transplant 2012; 27 (03) 973-977
  • 21 Askenazi DJ, Koralkar R, Hundley HE. , et al. Urine biomarkers predict acute kidney injury in newborns. J Pediatr 2012; 161 (02) 270-5.e1
  • 22 Smertka M, Wroblewska J, Suchojad A. , et al. Serum and urinary NGAL in septic newborns. BioMed Res Int 2014; 2014: 717318
  • 23 Weintraub AS, Connors J, Carey A, Blanco V, Green RS. The spectrum of onset of acute kidney injury in premature infants less than 30 weeks gestation. J Perinatol 2016; 36 (06) 474-480
  • 24 Filler G, Guerrero-Kanan R, Alvarez-Elías AC. Assessment of glomerular filtration rate in the neonate: is creatinine the best tool?. Curr Opin Pediatr 2016; 28 (02) 173-179
  • 25 Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 2015; 10 (01) 147-155
  • 26 Zhou M, Cheng S, Yu J, Lu Q. Interleukin-8 for diagnosis of neonatal sepsis: a meta-analysis. PLoS One 2015; 10 (05) e0127170
  • 27 Wynn JL, Wong HR, Shanley TP, Bizzarro MJ, Saiman L, Polin RA. Time for a neonatal-specific consensus definition for sepsis. Pediatr Crit Care Med 2014; 15 (06) 523-528
  • 28 Wynn JL. Defining neonatal sepsis. Curr Opin Pediatr 2016; 28 (02) 135-140
  • 29 Vergnano S, Sharland M, Kazembe P, Mwansambo C, Heath PT. Neonatal sepsis: an international perspective. Arch Dis Child Fetal Neonatal Ed 2005; 90 (03) F220-F224
  • 30 Obiero CW, Seale AC, Berkley JA. Empiric treatment of neonatal sepsis in developing countries. Pediatr Infect Dis J 2015; 34 (06) 659-661
  • 31 Edmond K, Zaidi A. New approaches to preventing, diagnosing, and treating neonatal sepsis. PLoS Med 2010; 7 (03) e1000213
  • 32 Zea-Vera A, Ochoa TJ. Challenges in the diagnosis and management of neonatal sepsis. J Trop Pediatr 2015; 61 (01) 1-13
  • 33 van Herk W, Stocker M, van Rossum AM. Recognising early onset neonatal sepsis: an essential step in appropriate antimicrobial use. J Infect 2016; 72: S77-S82
  • 34 Doi K. Role of kidney injury in sepsis. J Intensive Care 2016; 4: 17
  • 35 Gomez H, Ince C, De Backer D. , et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 2014; 41 (01) 3-11
  • 36 Honore PM, Jacobs R, Hendrickx I. , et al. Prevention and treatment of sepsis-induced acute kidney injury: an update. Ann Intensive Care 2015; 5 (01) 51
  • 37 Zarbock A, Gomez H, Kellum JA. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care 2014; 20 (06) 588-595
  • 38 Prowle JR, Bellomo R. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin Nephrol 2015; 35 (01) 64-74
  • 39 Langenberg C, Bellomo R, May C, Wan L, Egi M, Morgera S. Renal blood flow in sepsis. Crit Care 2005; 9 (04) R363-R374
  • 40 Kluckow M. Use of ultrasound in the haemodynamic assessment of the sick neonate. Arch Dis Child Fetal Neonatal Ed 2014; 99 (04) F332-F337
  • 41 Maddens B, Vandendriessche B, Demon D. , et al. Severity of sepsis-induced acute kidney injury in a novel mouse model is age dependent. Crit Care Med 2012; 40 (09) 2638-2646
  • 42 Seely KA, Holthoff JH, Burns ST. , et al. Hemodynamic changes in the kidney in a pediatric rat model of sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 2011; 301 (01) F209-F217
  • 43 Abitbol CL, DeFreitas MJ, Strauss J. Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol 2016; 31: 1-10
  • 44 Emlet DR, Shaw AD, Kellum JA. Sepsis-associated AKI: epithelial cell dysfunction. Semin Nephrol 2015; 35 (01) 85-95
  • 45 Awad H, el-Safty I, el-Barbary M, Imam S. Evaluation of renal glomerular and tubular functional and structural integrity in neonates. Am J Med Sci 2002; 324 (05) 261-266
  • 46 Garg PM, Tatum R, Ravisankar S, Shekhawat PS, Chen YH. Necrotizing enterocolitis in a mouse model leads to widespread renal inflammation, acute kidney injury, and disruption of renal tight junction proteins. Pediatr Res 2015; 78 (05) 527-532
  • 47 Claud EC. Neonatal necrotizing enterocolitis -inflammation and intestinal immaturity. Antiinflamm Antiallergy Agents Med Chem 2009; 8 (03) 248-259
  • 48 Hsieh EM, Hornik CP, Clark RH, Laughon MM, Benjamin Jr DK, Smith PB. ; Best Pharmaceuticals for Children Act—Pediatric Trials Network. Medication use in the neonatal intensive care unit. Am J Perinatol 2014; 31 (09) 811-821
  • 49 Diaz Heijtz R. Fetal, neonatal, and infant microbiome: perturbations and subsequent effects on brain development and behavior. Semin Fetal Neonatal Med 2016; 21 (06) 410-417
  • 50 Turta O, Rautava S. Antibiotics, obesity and the link to microbes - what are we doing to our children?. BMC Med 2016; 14: 57
  • 51 Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes 2014; 38 (10) 1290-1298
  • 52 Cotten CM. Adverse consequences of neonatal antibiotic exposure. Curr Opin Pediatr 2016; 28 (02) 141-149
  • 53 Arikan AA, Zappitelli M, Goldstein SL, Naipaul A, Jefferson LS, Loftis LL. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med 2012; 13 (03) 253-258
  • 54 Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int 2012; 2 (Suppl): 1-141
  • 55 Wang N, Jiang L, Zhu B, Wen Y, Xi XM. ; Beijing Acute Kidney Injury Trial (BAKIT) Workgroup. Fluid balance and mortality in critically ill patients with acute kidney injury: a multicenter prospective epidemiological study. Crit Care 2015; 19: 371
  • 56 Bouchard J, Soroko SB, Chertow GM. , et al; Program to Improve Care in Acute Renal Disease (PICARD) Study Group. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 2009; 76 (04) 422-427
  • 57 Cerda J, Sheinfeld G, Ronco C. Fluid overload in critically ill patients with acute kidney injury. Blood Purif 2010; 29 (04) 331-338
  • 58 Soler YA, Nieves-Plaza M, Prieto M, García-De Jesús R, Suárez-Rivera M. Pediatric risk, injury, failure, loss, end-stage renal disease score identifies acute kidney injury and predicts mortality in critically ill children: a prospective study. Pediatr Crit Care Med 2013; 14 (04) e189-e195
  • 59 Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Patil N, Ambalavanan N. Fluid overload and mortality are associated with acute kidney injury in sick near-term/term neonate. Pediatr Nephrol 2013; 28 (04) 661-666
  • 60 Sutherland SM, Zappitelli M, Alexander SR. , et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis 2010; 55 (02) 316-325
  • 61 Butcher BW, Liu KD. Fluid overload in AKI: epiphenomenon or putative effect on mortality?. Curr Opin Crit Care 2012; 18 (06) 593-598
  • 62 Rinke ML, Chen AR, Bundy DG. , et al. Implementation of a central line maintenance care bundle in hospitalized pediatric oncology patients. Pediatrics 2012; 130 (04) e996-e1004
  • 63 AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev 2014; (04) CD005496
  • 64 Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or proven infection in neonates. Cochrane Database Syst Rev 2015; (03) CD001239
  • 65 Carr R, Modi N, Doré C. G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst Rev 2003; 3 (03) CD003066
  • 66 Kylat RI, Ohlsson A. Recombinant human activated protein C for severe sepsis in neonates. Cochrane Database Syst Rev 2012; (04) CD005385
  • 67 Shah PS, Kaufman DA. Antistaphylococcal immunoglobulins to prevent staphylococcal infection in very low birth weight infants. Cochrane Database Syst Rev 2009; (02) CD006449
  • 68 Pammi M, Brocklehurst P. Granulocyte transfusions for neonates with confirmed or suspected sepsis and neutropenia. Cochrane Database Syst Rev 2011; (10) CD003956
  • 69 Yoshida S, Martines J, Lawn JE. , et al; neonatal health research priority setting group. Setting research priorities to improve global newborn health and prevent stillbirths by 2025. J Glob Health 2016; 6 (01) 010508
  • 70 Reilly R, Evans K, Gomersall J. , et al. Effectiveness, cost effectiveness, acceptability and implementation barriers/enablers of chronic kidney disease management programs for Indigenous people in Australia, New Zealand and Canada: a systematic review of mixed evidence. BMC Health Serv Res 2016; 16: 119
  • 71 Hoy WE, Samuel T, Mott SA. , et al. Renal biopsy findings among Indigenous Australians: a nationwide review. Kidney Int 2012; 82 (12) 1321-1331
  • 72 Hoy WE, Hughson MD, Kopp JB, Mott SA, Bertram JF, Winkler CA. APOL1 risk alleles are associated with exaggerated age-related changes in glomerular number and volume in African-American adults: an autopsy study. J Am Soc Nephrol 2015; 26 (12) 3179-3189
  • 73 Genovese G, Friedman DJ, Ross MD. , et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010; 329 5993 841-845
  • 74 White A, Wong W, Sureshkumur P, Singh G. The burden of kidney disease in indigenous children of Australia and New Zealand, epidemiology, antecedent factors and progression to chronic kidney disease. J Paediatr Child Health 2010; 46 (09) 504-509
  • 75 Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 2012; 81 (05) 442-448
  • 76 Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL. 3-5.  year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int 2006; 69 (01) 184-189
  • 77 Mammen C, Al Abbas A, Skippen P. , et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 2012; 59 (04) 523-530
  • 78 Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D. Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res 2011; 69 (04) 354-358
  • 79 Mehta RL, Kellum JA, Shah SV. , et al; Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11 (02) R31
  • 80 Charlton JR, Portilla D, Okusa MD. A basic science view of acute kidney injury biomarkers. Nephrol Dial Transplant 2014; 29 (07) 1301-1311
  • 81 Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol 2008; 48: 463-493
  • 82 de Geus HR, Betjes MG, Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J 2012; 5 (02) 102-108
  • 83 El-Achkar TM, Wu XR. Uromodulin in kidney injury: an instigator, bystander, or protector?. Am J Kidney Dis 2012; 59 (03) 452-461
  • 84 Schreiber R, Wolpin J, Koren G. Determinants of aciclovir-induced nephrotoxicity in children. Paediatr Drugs 2008; 10 (02) 135-139
  • 85 Gunness P, Aleksa K, Bend J, Koren G. Acyclovir-induced nephrotoxicity: the role of the acyclovir aldehyde metabolite. Transl Res 2011; 158 (05) 290-301
  • 86 Chai LY, Netea MG, Tai BC. , et al. An elevated pro-inflammatory cytokine response is linked to development of amphotericin B-induced nephrotoxicity. J Antimicrob Chemother 2013; 68 (07) 1655-1659
  • 87 Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 1999; 43 (05) 1003-1012
  • 88 Topham JC, Murgatroyd LB, Jones DV, Goonetilleke UR, Wright J. Safety evaluation of meropenem in animals: studies on the kidney. J Antimicrob Chemother 1989; 24 (Suppl A ): 287-306
  • 89 Bamgbola O. Review of vancomycin-induced renal toxicity: an update. Ther Adv Endocrinol Metab 2016; 7 (03) 136-147