Semin Thromb Hemost 2018; 44(05): 483-492
DOI: 10.1055/s-0036-1597290
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Mechanisms of Cellular Activation in the Antiphospholipid Syndrome

Nadine Müller-Calleja
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
2   Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
,
Karl J. Lackner
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
06 February 2017 (online)

Abstract

It is long known that antiphospholipid antibodies (aPL) induce proinflammatory and procoagulant cellular responses. The underlying signal transduction has been a major focus of research and is the topic of this review. An amazingly heterogeneous panel of signaling pathways has been described and it turns out that at least some of this heterogeneity can be explained by effects of distinct aPL species. On the one hand, there are antibodies against β2-glycoprotein I (β2GPI) which appear to exert their cellular effects only as a complex of β2GPI/anti-β2GPI. Their major targets are low-density lipoprotein-receptor related protein 8 (LRP8), annexin A2 (ANXA2), toll-like receptor 4 (TLR4), and possibly TLR2. The other relevant aPL species are antibodies against cardiolipin which are internalized into endosomes and induce cellular responses via activation of endosomal NADPH-oxidase. Their cell surface target is still unknown. Another important issue relates to the role of complement. It has been shown in vivo that certain pathogenic effects of aPL depend on complement activation, but the exact interplay with the signaling pathways described earlier needs to be elucidated. Thus, while there has been tremendous progress over the past decade, many open questions remain to be answered.

 
  • References

  • 1 Branch DW, Dudley DJ, Mitchell MD. , et al. Immunoglobulin G fractions from patients with antiphospholipid antibodies cause fetal death in BALB/c mice: a model for autoimmune fetal loss. Am J Obstet Gynecol 1990; 163 (1, Pt 1): 210-216
  • 2 Blank M, Cohen J, Toder V, Shoenfeld Y. Induction of anti-phospholipid syndrome in naive mice with mouse lupus monoclonal and human polyclonal anti-cardiolipin antibodies. Proc Natl Acad Sci U S A 1991; 88 (08) 3069-3073
  • 3 Pierangeli SS, Barker JH, Stikovac D. , et al. Effect of human IgG antiphospholipid antibodies on an in vivo thrombosis model in mice. Thromb Haemost 1994; 71 (05) 670-674
  • 4 Poulton K, Rahman A, Giles I. Examining how antiphospholipid antibodies activate intracellular signaling pathways: a systematic review. Semin Arthritis Rheum 2012; 41 (05) 720-736
  • 5 Arad A, Proulle V, Furie RA, Furie BC, Furie B. β2-Glycoprotein-1 autoantibodies from patients with antiphospholipid syndrome are sufficient to potentiate arterial thrombus formation in a mouse model. Blood 2011; 117 (12) 3453-3459
  • 6 Pericleous C, Ruiz-Limón P, Romay-Penabad Z. , et al. Proof-of-concept study demonstrating the pathogenicity of affinity-purified IgG antibodies directed to domain I of β2-glycoprotein I in a mouse model of anti-phospholipid antibody-induced thrombosis. Rheumatology (Oxford) 2015; 54 (04) 722-727
  • 7 Branch DW, Rodgers GM. Induction of endothelial cell tissue factor activity by sera from patients with antiphospholipid syndrome: a possible mechanism of thrombosis. Am J Obstet Gynecol 1993; 168 (1, Pt 1): 206-210
  • 8 Kornberg A, Blank M, Kaufman S, Shoenfeld Y. Induction of tissue factor-like activity in monocytes by anti-cardiolipin antibodies. J Immunol 1994; 153 (03) 1328-1332
  • 9 Reverter JC, Tàssies D, Font J. , et al. Effects of human monoclonal anticardiolipin antibodies on platelet function and on tissue factor expression on monocytes. Arthritis Rheum 1998; 41 (08) 1420-1427
  • 10 Xie H, Sheng L, Zhou H, Yan J. The role of TLR4 in pathophysiology of antiphospholipid syndrome-associated thrombosis and pregnancy morbidity. Br J Haematol 2014; 164 (02) 165-176
  • 11 Zhang J, McCrae KR. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein I antibodies. Blood 2005; 105 (05) 1964-1969
  • 12 Clemens N, Frauenknecht K, Katzav A, Sommer C, von Landenberg P. In vitro effects of antiphospholipid syndrome-IgG fractions and human monoclonal antiphospholipid IgG antibody on human umbilical vein endothelial cells and monocytes. Ann N Y Acad Sci 2009; 1173: 805-813
  • 13 Prinz N, Clemens N, Canisius A, Lackner KJ. Endosomal NADPH-oxidase is critical for induction of the tissue factor gene in monocytes and endothelial cells. Lessons from the antiphospholipid syndrome. Thromb Haemost 2013; 109 (03) 525-531
  • 14 Mulla MJ, Brosens JJ, Chamley LW. , et al. Antiphospholipid antibodies induce a pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. Am J Reprod Immunol 2009; 62 (02) 96-111
  • 15 Pierangeli SS, Vega-Ostertag M, Harris EN. Intracellular signaling triggered by antiphospholipid antibodies in platelets and endothelial cells: a pathway to targeted therapies. Thromb Res 2004; 114 (05/06) 467-476
  • 16 Katzav A, Menachem A, Maggio N, Pollak L, Pick CG, Chapman J. IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome. J Autoimmun 2014; 55: 86-93
  • 17 Gladigau G, Haselmayer P, Scharrer I. , et al. A role for Toll-like receptor mediated signals in neutrophils in the pathogenesis of the anti-phospholipid syndrome. PLoS One 2012; 7 (07) e42176
  • 18 Sun KH, Liu WT, Tsai CY, Liao TS, Lin WM, Yu CL. Inhibition of astrocyte proliferation and binding to brain tissue of anticardiolipin antibodies purified from lupus serum. Ann Rheum Dis 1992; 51 (06) 707-712
  • 19 Prinz N, Clemens N, Strand D. , et al. Antiphospholipid antibodies induce translocation of TLR7 and TLR8 to the endosome in human monocytes and plasmacytoid dendritic cells. Blood 2011; 118 (08) 2322-2332
  • 20 Pierangeli SS, Liu SW, Anderson G, Barker JH, Harris EN. Thrombogenic properties of murine anti-cardiolipin antibodies induced by beta 2 glycoprotein 1 and human immunoglobulin G antiphospholipid antibodies. Circulation 1996; 94 (07) 1746-1751
  • 21 Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev 2002; 82 (02) 331-371
  • 22 He KL, Deora AB, Xiong H. , et al. Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J Biol Chem 2008; 283 (28) 19192-19200
  • 23 Hou Y, Yang L, Mou M. , et al. Annexin A2 regulates the levels of plasmin, S100A10 and Fascin in L5178Y cells. Cancer Invest 2008; 26 (08) 809-815
  • 24 Babiychuk EB, Draeger A. Annexins in cell membrane dynamics. Ca(2+)-regulated association of lipid microdomains. J Cell Biol 2000; 150 (05) 1113-1124
  • 25 Oliferenko S, Paiha K, Harder T. , et al. Analysis of CD44-containing lipid rafts: Recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol 1999; 146 (04) 843-854
  • 26 Bharadwaj A, Bydoun M, Holloway R, Waisman D. Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14 (03) 6259-6305
  • 27 Ma K, Simantov R, Zhang JC, Silverstein R, Hajjar KA, McCrae KR. High affinity binding of beta 2-glycoprotein I to human endothelial cells is mediated by annexin II. J Biol Chem 2000; 275 (20) 15541-15548
  • 28 Zhou H, Ling S, Yu Y, Wang T, Hu H. Involvement of annexin A2 in anti-beta2GPI/beta2GPI-induced tissue factor expression on monocytes. Cell Res 2007; 17 (08) 737-739
  • 29 Romay-Penabad Z, Montiel-Manzano MG, Shilagard T. , et al. Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo. Blood 2009; 114 (14) 3074-3083
  • 30 Bellagamba C, Hubaishy I, Bjorge JD, Fitzpatrick SL, Fujita DJ, Waisman DM. Tyrosine phosphorylation of annexin II tetramer is stimulated by membrane binding. J Biol Chem 1997; 272 (06) 3195-3199
  • 31 Urbanus RT, Derksen RH, de Groot PG. Current insight into diagnostics and pathophysiology of the antiphospolipid syndrome. Blood Rev 2008; 22 (02) 93-105
  • 32 Cockrell E, Espinola RG, McCrae KR. Annexin A2: biology and relevance to the antiphospholipid syndrome. Lupus 2008; 17 (10) 943-951
  • 33 Allen KL, Fonseca FV, Betapudi V, Willard B, Zhang J, McCrae KR. A novel pathway for human endothelial cell activation by antiphospholipid/anti-β2 glycoprotein I antibodies. Blood 2012; 119 (03) 884-893
  • 34 Chaturvedi S, Alluri R, McCrae KR. Extracellular vesicles in the antiphospholipid syndrome. Semin Thromb Hemost 2018; 44 (05) 493-504
  • 35 Funakoshi T, Heimark RL, Hendrickson LE, McMullen BA, Fujikawa K. Human placental anticoagulant protein: isolation and characterization. Biochemistry 1987; 26 (17) 5572-5578
  • 36 Tait JF, Sakata M, McMullen BA. , et al. Placental anticoagulant proteins: isolation and comparative characterization four members of the lipocortin family. Biochemistry 1988; 27 (17) 6268-6276
  • 37 Mosser G, Ravanat C, Freyssinet JM, Brisson A. Sub-domain structure of lipid-bound annexin-V resolved by electron image analysis. J Mol Biol 1991; 217 (02) 241-245
  • 38 Voges D, Berendes R, Burger A, Demange P, Baumeister W, Huber R. Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy-X-ray crystallography study. J Mol Biol 1994; 238 (02) 199-213
  • 39 Reviakine I, Bergsma-Schutter W, Brisson A. Growth of protein 2-D crystals on supported planar lipid bilayers imaged in situ by AFM. J Struct Biol 1998; 121 (03) 356-361
  • 40 Andree HA, Stuart MC, Hermens WT. , et al. Clustering of lipid-bound annexin V may explain its anticoagulant effect. J Biol Chem 1992; 267 (25) 17907-17912
  • 41 Rand JH, Wu XX, Andree HA. , et al. Pregnancy loss in the antiphospholipid-antibody syndrome--a possible thrombogenic mechanism. N Engl J Med 1997; 337 (03) 154-160
  • 42 Vogt E, Ng AK, Rote NS. Antiphosphatidylserine antibody removes annexin-V and facilitates the binding of prothrombin at the surface of a choriocarcinoma model of trophoblast differentiation. Am J Obstet Gynecol 1997; 177 (04) 964-972
  • 43 Cederholm A, Svenungsson E, Jensen-Urstad K. , et al. Decreased binding of annexin v to endothelial cells: a potential mechanism in atherothrombosis of patients with systemic lupus erythematosus. Arterioscler Thromb Vasc Biol 2005; 25 (01) 198-203
  • 44 Rand JH, Wu XX, Quinn AS. , et al. Human monoclonal antiphospholipid antibodies disrupt the annexin A5 anticoagulant crystal shield on phospholipid bilayers: evidence from atomic force microscopy and functional assay. Am J Pathol 2003; 163 (03) 1193-1200
  • 45 Gaspersic N, Ambrozic A, Bozic B, Majhenc J, Svetina S, Rozman B. Annexin A5 binding to giant phospholipid vesicles is differentially affected by anti-beta2-glycoprotein I and anti-annexin A5 antibodies. Rheumatology (Oxford) 2007; 46 (01) 81-86
  • 46 Hanly JG, Smith SA. Anti-beta2-glycoprotein I (GPI) autoantibodies, annexin V binding and the anti-phospholipid syndrome. Clin Exp Immunol 2000; 120 (03) 537-543
  • 47 Rand JH, Wu XX, Andree HA. , et al. Antiphospholipid antibodies accelerate plasma coagulation by inhibiting annexin-V binding to phospholipids: a “lupus procoagulant” phenomenon. Blood 1998; 92 (05) 1652-1660
  • 48 de Laat B, Wu XX, van Lummel M, Derksen RH, de Groot PG, Rand JH. Correlation between antiphospholipid antibodies that recognize domain I of beta2-glycoprotein I and a reduction in the anticoagulant activity of annexin A5. Blood 2007; 109 (04) 1490-1494
  • 49 de Laat B, Derksen RH, Urbanus RT, de Groot PG. IgG antibodies that recognize epitope Gly40-Arg43 in domain I of beta 2-glycoprotein I cause LAC, and their presence correlates strongly with thrombosis. Blood 2005; 105 (04) 1540-1545
  • 50 de Laat B, Pengo V, Pabinger I. , et al. The association between circulating antibodies against domain I of beta2-glycoprotein I and thrombosis: an international multicenter study. J Thromb Haemost 2009; 7 (11) 1767-1773
  • 51 Brachvogel B, Dikschas J, Moch H. , et al. Annexin A5 is not essential for skeletal development. Mol Cell Biol 2003; 23 (08) 2907-2913
  • 52 Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2 (08) 675-680
  • 53 Kawai T, Akira S. Toll-like receptor downstream signaling. Arthritis Res Ther 2005; 7 (01) 12-19
  • 54 Beutler B, Du X, Poltorak A. Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. J Endotoxin Res 2001; 7 (04) 277-280
  • 55 Raschi E, Testoni C, Bosisio D. , et al. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood 2003; 101 (09) 3495-3500
  • 56 Cuadrado MJ, López-Pedrera C, Khamashta MA. , et al. Thrombosis in primary antiphospholipid syndrome: a pivotal role for monocyte tissue factor expression. Arthritis Rheum 1997; 40 (05) 834-841
  • 57 Dobado-Berrios PM, López-Pedrera C, Velasco F, Aguirre MA, Torres A, Cuadrado MJ. Increased levels of tissue factor mRNA in mononuclear blood cells of patients with primary antiphospholipid syndrome. Thromb Haemost 1999; 82 (06) 1578-1582
  • 58 Dobado-Berrios PM, López-Pedrera C, Velasco F, Cuadrado MJ. The role of tissue factor in the antiphospholipid syndrome. Arthritis Rheum 2001; 44 (11) 2467-2476
  • 59 Sorice M, Longo A, Capozzi A. , et al. Anti-beta2-glycoprotein I antibodies induce monocyte release of tumor necrosis factor alpha and tissue factor by signal transduction pathways involving lipid rafts. Arthritis Rheum 2007; 56 (08) 2687-2697
  • 60 Colasanti T, Alessandri C, Capozzi A. , et al. Autoantibodies specific to a peptide of β2-glycoprotein I cross-react with TLR4, inducing a proinflammatory phenotype in endothelial cells and monocytes. Blood 2012; 120 (16) 3360-3370
  • 61 Raschi E, Borghi MO, Grossi C, Broggini V, Pierangeli S, Meroni PL. Toll-like receptors: another player in the pathogenesis of the anti-phospholipid syndrome. Lupus 2008; 17 (10) 937-942
  • 62 Pierangeli SS, Vega-Ostertag ME, Raschi E. , et al. Toll-like receptor and antiphospholipid mediated thrombosis: in vivo studies. Ann Rheum Dis 2007; 66 (10) 1327-1333
  • 63 Akira S, Takeda K. Functions of toll-like receptors: lessons from KO mice. C R Biol 2004; 327 (06) 581-589
  • 64 Hoshino K, Takeuchi O, Kawai T. , et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162 (07) 3749-3752
  • 65 Manukyan D, Müller-Calleja N, Jäckel S. , et al. Cofactor-independent human antiphospholipid antibodies induce venous thrombosis in mice. J Thromb Haemost 2016; 14 (05) 1011-1020
  • 66 Girardi G, Mackman N. Tissue factor in antiphospholipid antibody-induced pregnancy loss: a pro-inflammatory molecule. Lupus 2008; 17 (10) 931-936
  • 67 Oliveira-Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity. Front Immunol 2012; 3: 79
  • 68 Satta N, Dunoyer-Geindre S, Reber G. , et al. The role of TLR2 in the inflammatory activation of mouse fibroblasts by human antiphospholipid antibodies. Blood 2007; 109 (04) 1507-1514
  • 69 Satta N, Kruithof EK, Fickentscher C. , et al. Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies. Blood 2011; 117 (20) 5523-5531
  • 70 Brandt KJ, Fickentscher C, Boehlen F, Kruithof EK, de Moerloose P. NF-κB is activated from endosomal compartments in antiphospholipid antibodies-treated human monocytes. J Thromb Haemost 2014; 12 (05) 779-791
  • 71 Müller-Calleja N, Köhler A, Siebald B. , et al. Cofactor-independent antiphospholipid antibodies activate the NLRP3-inflammasome via endosomal NADPH-oxidase: implications for the antiphospholipid syndrome. Thromb Haemost 2015; 113 (05) 1071-1083
  • 72 Benhamou Y, Bellien J, Armengol G. , et al. Role of Toll-like receptors 2 and 4 in mediating endothelial dysfunction and arterial remodeling in primary arterial antiphospholipid syndrome. Arthritis Rheumatol 2014; 66 (11) 3210-3220
  • 73 May P, Woldt E, Matz RL, Boucher P. The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 2007; 39 (03) 219-228
  • 74 Mayer H, Duit S, Hauser C, Schneider WJ, Nimpf J. Reconstitution of the Reelin signaling pathway in fibroblasts demonstrates that Dab1 phosphorylation is independent of receptor localization in lipid rafts. Mol Cell Biol 2006; 26 (01) 19-27
  • 75 Riddell DR, Vinogradov DV, Stannard AK, Chadwick N, Owen JS. Identification and characterization of LRP8 (apoER2) in human blood platelets. J Lipid Res 1999; 40 (10) 1925-1930
  • 76 Yang XV, Banerjee Y, Fernández JA. , et al. Activated protein C ligation of ApoER2 (LRP8) causes Dab1-dependent signaling in U937 cells. Proc Natl Acad Sci U S A 2009; 106 (01) 274-279
  • 77 Ulrich V, Gelber SE, Vukelic M. , et al. ApoE receptor 2 mediation of trophoblast dysfunction and pregnancy complications induced by antiphospholipid antibodies in mice. Arthritis Rheumatol 2016; 68 (03) 730-739
  • 78 Pennings MT, Derksen RH, Urbanus RT, Tekelenburg WL, Hemrika W, de Groot PG. Platelets express three different splice variants of ApoER2 that are all involved in signaling. J Thromb Haemost 2007; 5 (07) 1538-1544
  • 79 Robertson JO, Li W, Silverstein RL, Topol EJ, Smith JD. Deficiency of LRP8 in mice is associated with altered platelet function and prolonged time for in vivo thrombosis. Thromb Res 2009; 123 (04) 644-652
  • 80 Ulrich V, Konaniah ES, Herz J. , et al. Genetic variants of ApoE and ApoER2 differentially modulate endothelial function. Proc Natl Acad Sci U S A 2014; 111 (37) 13493-13498
  • 81 Wang L, Wang X, Laird N, Zuckerman B, Stubblefield P, Xu X. Polymorphism in maternal LRP8 gene is associated with fetal growth. Am J Hum Genet 2006; 78 (05) 770-777
  • 82 Lutters BC, Derksen RH, Tekelenburg WL, Lenting PJ, Arnout J, de Groot PG. Dimers of beta 2-glycoprotein I increase platelet deposition to collagen via interaction with phospholipids and the apolipoprotein E receptor 2′. J Biol Chem 2003; 278 (36) 33831-33838
  • 83 Urbanus RT, Pennings MT, Derksen RH, de Groot PG. Platelet activation by dimeric beta2-glycoprotein I requires signaling via both glycoprotein Ibalpha and apolipoprotein E receptor 2′. J Thromb Haemost 2008; 6 (08) 1405-1412
  • 84 Ramesh S, Morrell CN, Tarango C. , et al. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. J Clin Invest 2011; 121 (01) 120-131
  • 85 Romay-Penabad Z, Aguilar-Valenzuela R, Urbanus RT. , et al. Apolipoprotein E receptor 2 is involved in the thrombotic complications in a murine model of the antiphospholipid syndrome. Blood 2011; 117 (04) 1408-1414
  • 86 Kolyada A, Porter A, Beglova N. Inhibition of thrombotic properties of persistent autoimmune anti-β2GPI antibodies in the mouse model of antiphospholipid syndrome. Blood 2014; 123 (07) 1090-1097
  • 87 Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, Gruenberg J. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 1998; 392 (6672): 193-197
  • 88 Canaud G, Bienaimé F, Tabarin F. , et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N Engl J Med 2014; 371 (04) 303-312
  • 89 Canaud G, Legendre C, Terzi F. AKT/mTORC pathway in antiphospholipid-related vasculopathy: a new player in the game. Lupus 2015; 24 (03) 227-230
  • 90 Girardi G, Berman J, Redecha P. , et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 2003; 112 (11) 1644-1654
  • 91 Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med 2004; 10 (11) 1222-1226
  • 92 Redecha P, Franzke CW, Ruf W, Mackman N, Girardi G. Neutrophil activation by the tissue factor/Factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome. J Clin Invest 2008; 118 (10) 3453-3461
  • 93 Pierangeli SS, Girardi G, Vega-Ostertag M, Liu X, Espinola RG, Salmon J. Requirement of activation of complement C3 and C5 for antiphospholipid antibody-mediated thrombophilia. Arthritis Rheum 2005; 52 (07) 2120-2124
  • 94 Romay-Penabad Z, Liu XX, Montiel-Manzano G, Papalardo De Martínez E, Pierangeli SS. C5a receptor-deficient mice are protected from thrombophilia and endothelial cell activation induced by some antiphospholipid antibodies. Ann N Y Acad Sci 2007; 1108: 554-566
  • 95 Carrera-Marín A, Romay-Penabad Z, Papalardo E. , et al. C6 knock-out mice are protected from thrombophilia mediated by antiphospholipid antibodies. Lupus 2012; 21 (14) 1497-1505
  • 96 von Landenberg C, Lackner KJ, von Landenberg P, Lang B, Schmitz G. Isolation and characterization of two human monoclonal anti-phospholipid IgG from patients with autoimmune disease. J Autoimmun 1999; 13 (02) 215-223
  • 97 Lackner KJ, von Landenberg C, Barlage S, Schmitz G. Analysis of prothrombotic effects of two human monoclonal IgG antiphospholipid antibodies of apparently similar specificity. Thromb Haemost 2000; 83 (04) 583-588
  • 98 Ikematsu W, Luan FL, La Rosa L. , et al. Human anticardiolipin monoclonal autoantibodies cause placental necrosis and fetal loss in BALB/c mice. Arthritis Rheum 1998; 41 (06) 1026-1039
  • 99 Proulle V, Furie RA, Merrill-Skoloff G, Furie BC, Furie B. Platelets are required for enhanced activation of the endothelium and fibrinogen in a mouse thrombosis model of APS. Blood 2014; 124 (04) 611-622
  • 100 Nishimura M, Nii T, Trimova G. , et al. The NF-κB specific inhibitor DHMEQ prevents thrombus formation in a mouse model of antiphospholipid syndrome. J Nephropathol 2013; 2 (02) 114-121