Semin Respir Crit Care Med 2016; 37(05): 670-680
DOI: 10.1055/s-0036-1592314
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Pursuit of Noninvasive Diagnosis of Lung Cancer

Thomas Atwater
1   Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
,
Christine M. Cook
1   Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
,
Pierre P. Massion
2   Cornelius Vanderbilt Endowed Chair in Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
3   Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
› Author Affiliations
Further Information

Publication History

Publication Date:
12 October 2016 (online)

Abstract

The noninvasive diagnosis of lung cancer remains a formidable challenge. Although tissue diagnosis will remain the gold standard for the foreseeable future, questions pertaining to the risks and costs associated with invasive diagnostic procedures are of prime relevance. This review addresses new modalities for improving the noninvasive evaluation of suspicious lung nodules. Ultimately, the goal is to translate early diagnosis into early treatment. We discuss how biomarkers could assist in distinguishing benign from malignant nodules and aggressive from indolent tumors. The field of biomarkers is rapidly expanding and progressing, and efforts are well underway to apply molecular diagnostics to address the shortcomings of current lung cancer diagnostic tools.

 
  • References

  • 1 CDC Atlanta, GA: Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2015
  • 2 SEER National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch; 2014
  • 3 Goldstraw P, Crowley J, Chansky K , et al; International Association for the Study of Lung Cancer International Staging Committee; Participating Institutions. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2007; 2 (8) 706-714
  • 4 Gould MK, Tang T, Liu IL , et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med 2015; 192 (10) 1208-1214
  • 5 Aberle DR, Adams AM, Berg CD , et al; National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365 (5) 395-409
  • 6 Yang W, Sun W, Li Q , et al. Diagnostic accuracy of CT-guided transthoracic needle biopsy for solitary pulmonary nodules. PLoS ONE 2015; 10 (6) e0131373
  • 7 Yeow KM, See LC, Lui KW , et al. Risk factors for pneumothorax and bleeding after CT-guided percutaneous coaxial cutting needle biopsy of lung lesions. J Vasc Interv Radiol 2001; 12 (11) 1305-1312
  • 8 Tanner NT, Aggarwal J, Gould MK , et al. Management of pulmonary nodules by community pulmonologists: a multicenter observational study. Chest 2015; 148 (6) 1405-1414
  • 9 Deppen S, Putnam Jr JB, Andrade G , et al. Accuracy of FDG-PET to diagnose lung cancer in a region of endemic granulomatous disease. Ann Thorac Surg 2011; 92 (2) 428-432 , discussion 433
  • 10 Deppen SA, Blume JD, Kensinger CD , et al. Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: a meta-analysis. JAMA 2014; 312 (12) 1227-1236
  • 11 Atwater T, Massion PP. Biomarkers of risk to develop lung cancer in the new screening era. Ann Transl Med 2016; 4 (8) 158
  • 12 Shepherd FA, Rodrigues Pereira J, Ciuleanu T , et al; National Cancer Institute of Canada Clinical Trials Group. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005; 353 (2) 123-132
  • 13 Hirsch FR, Varella-Garcia M, Bunn Jr PA , et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 2003; 21 (20) 3798-3807
  • 14 Thatcher N, Chang A, Parikh P , et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 2005; 366 (9496) 1527-1537
  • 15 Winton T, Livingston R, Johnson D , et al; National Cancer Institute of Canada Clinical Trials Group; National Cancer Institute of the United States Intergroup JBR.10 Trial Investigators. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med 2005; 352 (25) 2589-2597
  • 16 Tsao MS, Aviel-Ronen S, Ding K , et al. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol 2007; 25 (33) 5240-5247
  • 17 Zhu CQ, da Cunha Santos G, Ding K , et al; National Cancer Institute of Canada Clinical Trials Group Study BR.21. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol 2008; 26 (26) 4268-4275
  • 18 Pepe MS, Feng Z, Janes H, Bossuyt PM, Potter JD. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst 2008; 100 (20) 1432-1438
  • 19 Institute of Medicine In: Academies IoMotN ed. Advising the Nation Improving Health. 2012
  • 20 Hayes DF, Bast RC, Desch CE , et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst 1996; 88 (20) 1456-1466
  • 21 Botkin JR, Teutsch SM, Kaye CI , et al; EGAPP Working Group. Outcomes of interest in evidence-based evaluations of genetic tests. Genet Med 2010; 12 (4) 228-235
  • 22 Erasmus JJ, Connolly JE, McAdams HP, Roggli VL. Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions. Radiographics 2000; 20 (1) 43-58
  • 23 Zerhouni EA, Stitik FP, Siegelman SS , et al. CT of the pulmonary nodule: a cooperative study. Radiology 1986; 160 (2) 319-327
  • 24 Gurney JW. Determining the likelihood of malignancy in solitary pulmonary nodules with Bayesian analysis. Part I. Theory. Radiology 1993; 186 (2) 405-413
  • 25 MacMahon H, Austin JH, Gamsu G , et al; Fleischner Society. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 2005; 237 (2) 395-400
  • 26 Eisenhauer EA, Therasse P, Bogaerts J , et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45 (2) 228-247
  • 27 Naidich DP, Bankier AA, MacMahon H , et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology 2013; 266 (1) 304-317
  • 28 Gierada DS, Pinsky P, Nath H, Chiles C, Duan F, Aberle DR. Projected outcomes using different nodule sizes to define a positive CT lung cancer screening examination. J Natl Cancer Inst 2014; 106 (11)
  • 29 Henschke CI, Yip R, Yankelevitz DF, Smith JP ; International Early Lung Cancer Action Program Investigators*. Definition of a positive test result in computed tomography screening for lung cancer: a cohort study. Ann Intern Med 2013; 158 (4) 246-252
  • 30 Quint LE, Cheng J, Schipper M, Chang AC, Kalemkerian G. Lung lesion doubling times: values and variability based on method of volume determination. Clin Radiol 2008; 63 (1) 41-48
  • 31 van Klaveren RJ, Oudkerk M, Prokop M , et al. Management of lung nodules detected by volume CT scanning. N Engl J Med 2009; 361 (23) 2221-2229
  • 32 Smith GT, Rahman AR, Li M , et al. Reproducibility of volumetric computed tomography of stable small pulmonary nodules with implications on estimated growth rate and optimal scan interval. PLoS ONE 2015; 10 (9) e0138144
  • 33 Swensen SJ, Silverstein MD, Ilstrup DM, Schleck CD, Edell ES. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med 1997; 157 (8) 849-855
  • 34 Gould MK, Ananth L, Barnett PG ; Veterans Affairs SNAP Cooperative Study Group. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules. Chest 2007; 131 (2) 383-388
  • 35 McWilliams A, Tammemagi MC, Mayo JR , et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 2013; 369 (10) 910-919
  • 36 Deppen SA, Blume JD, Aldrich MC , et al. Predicting lung cancer prior to surgical resection in patients with lung nodules. J Thorac Oncol 2014; 9 (10) 1477-1484
  • 37 Gevaert O, Xu J, Hoang CD , et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data—methods and preliminary results. Radiology 2012; 264 (2) 387-396
  • 38 Ravanelli M, Farina D, Morassi M , et al. Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur Radiol 2013; 23 (12) 3450-3455
  • 39 Maldonado F, Boland JM, Raghunath S , et al. Noninvasive characterization of the histopathologic features of pulmonary nodules of the lung adenocarcinoma spectrum using computer-aided nodule assessment and risk yield (CANARY)—a pilot study. J Thorac Oncol 2013; 8 (4) 452-460
  • 40 Raghunath S, Maldonado F, Rajagopalan S , et al. Noninvasive risk stratification of lung adenocarcinoma using quantitative computed tomography. J Thorac Oncol 2014; 9 (11) 1698-1703
  • 41 Maldonado F, Duan F, Raghunath SM , et al. Noninvasive computed tomography-based risk stratification of lung adenocarcinomas in the National Lung Screening Trial. Am J Respir Crit Care Med 2015; 192 (6) 737-744
  • 42 Aerts HJ, Velazquez ER, Leijenaar RT , et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5: 4006
  • 43 Lambin P, Rios-Velazquez E, Leijenaar R , et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48 (4) 441-446
  • 44 Kumar V, Gu Y, Basu S , et al. Radiomics: the process and the challenges. Magn Reson Imaging 2012; 30 (9) 1234-1248
  • 45 Segal E, Friedman N, Koller D, Regev A. A module map showing conditional activity of expression modules in cancer. Nat Genet 2004; 36 (10) 1090-1098
  • 46 Mulshine JL, Gierada DS, Armato III SG , et al. Role of the Quantitative Imaging Biomarker Alliance in optimizing CT for the evaluation of lung cancer screen-detected nodules. J Am Coll Radiol 2015; 12 (4) 390-395
  • 47 Hori SS, Gambhir SS. Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci Transl Med 2011; 3 (109) 109ra116
  • 48 Thorpe JD, Duan X, Forrest R , et al. Effects of blood collection conditions on ovarian cancer serum markers. PLoS ONE 2007; 2 (12) e1281
  • 49 Silvestri GA, Vachani A, Whitney D , et al; AEGIS Study Team. A bronchial genomic classifier for the diagnostic evaluation of lung cancer. N Engl J Med 2015; 373 (3) 243-251
  • 50 Jett JR, Peek LJ, Fredericks L, Jewell W, Pingleton WW, Robertson JF. Audit of the autoantibody test, EarlyCDT®-Lung, in 1600 patients: an evaluation of its performance in routine clinical practice. Lung Cancer 2014; 83 (1) 51-55
  • 51 Chapman CJ, Murray A, McElveen JE , et al. Autoantibodies in lung cancer: possibilities for early detection and subsequent cure. Thorax 2008; 63 (3) 228-233
  • 52 Murray A, Chapman CJ, Healey G , et al. Technical validation of an autoantibody test for lung cancer. Ann Oncol 2010; 21 (8) 1687-1693
  • 53 Boyle P, Chapman CJ, Holdenrieder S , et al. Clinical validation of an autoantibody test for lung cancer. Ann Oncol 2011; 22 (2) 383-389
  • 54 Sozzi G, Boeri M, Rossi M , et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol 2014; 32 (8) 768-773
  • 55 Mitchell PS, Parkin RK, Kroh EM , et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008; 105 (30) 10513-10518
  • 56 Li S, Zhu J, Zhang W , et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 2011; 124 (2) 175-184
  • 57 Boeri M, Verri C, Conte D , et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A 2011; 108 (9) 3713-3718
  • 58 Xing L, Su J, Guarnera MA , et al. Sputum microRNA biomarkers for identifying lung cancer in indeterminate solitary pulmonary nodules. Clin Cancer Res 2015; 21 (2) 484-489
  • 59 Huang Y, Hu Q, Deng Z, Hang Y, Wang J, Wang K. MicroRNAs in body fluids as biomarkers for non-small cell lung cancer: a systematic review. Technol Cancer Res Treat 2014; 13 (3) 277-287
  • 60 Wang C, Ding M, Xia M , et al. A five-miRNA panel identified from a multicentric case-control study serves as a novel diagnostic tool for ethnically diverse non-small-cell lung cancer patients. EBioMedicine 2015; 2 (10) 1377-1385
  • 61 Zeng GQ, Yi H, Zhang PF , et al. The function and significance of SELENBP1 downregulation in human bronchial epithelial carcinogenic process. PLoS ONE 2013; 8 (8) e71865
  • 62 Lehtonen ST, Svensk AM, Soini Y , et al. Peroxiredoxins, a novel protein family in lung cancer. Int J Cancer 2004; 111 (4) 514-521
  • 63 Li XJ, Hayward C, Fong PY , et al. A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci Transl Med 2013; 5 (207) 207ra142
  • 64 Vachani A, Hammoud Z, Springmeyer S , et al. Clinical utility of a plasma protein classifier for indeterminate lung nodules. Lung 2015; 193 (6) 1023-1027
  • 65 Mazzone PJ, Wang XF, Xu Y , et al. Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. J Thorac Oncol 2012; 7 (1) 137-142
  • 66 Peled N, Hakim M, Bunn Jr PA , et al. Non-invasive breath analysis of pulmonary nodules. J Thorac Oncol 2012; 7 (10) 1528-1533
  • 67 Mazzone PJ, Wang XF, Lim S , et al. Progress in the development of volatile exhaled breath signatures of lung cancer. Ann Am Thorac Soc 2015; 12 (5) 752-757
  • 68 Fernandes MP, Venkatesh S, Sudarshan BG. Early detection of lung cancer using nano-nose - a review. Open Biomed Eng J 2015; 9: 228-233
  • 69 van der Schee MP, Paff T, Brinkman P, van Aalderen WM, Haarman EG, Sterk PJ. Breathomics in lung disease. Chest 2015; 147 (1) 224-231
  • 70 Davies MP, Barash O, Jeries R , et al. Unique volatolomic signatures of TP53 and KRAS in lung cells. Br J Cancer 2014; 111 (6) 1213-1221
  • 71 Krilaviciute A, Heiss JA, Leja M, Kupcinskas J, Haick H, Brenner H. Detection of cancer through exhaled breath: a systematic review. Oncotarget 2015; 6 (36) 38643-38657
  • 72 Went PT, Lugli A, Meier S , et al. Frequent EpCam protein expression in human carcinomas. Hum Pathol 2004; 35 (1) 122-128
  • 73 Balzar M, Winter MJ, de Boer CJ, Litvinov SV. The biology of the 17-1A antigen (Ep-CAM). J Mol Med (Berl) 1999; 77 (10) 699-712
  • 74 Mattano Jr LA, Moss TJ, Emerson SG. Sensitive detection of rare circulating neuroblastoma cells by the reverse transcriptase-polymerase chain reaction. Cancer Res 1992; 52 (17) 4701-4705
  • 75 Nagrath S, Sequist LV, Maheswaran S , et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007; 450 (7173) 1235-1239
  • 76 Ilie M, Hofman V, Long-Mira E , et al. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS ONE 2014; 9 (10) e111597
  • 77 Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37 (3) 646-650
  • 78 Sozzi G, Conte D, Leon M , et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol 2003; 21 (21) 3902-3908
  • 79 Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer 2002; 2 (3) 210-219
  • 80 Diehl F, Li M, Dressman D , et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 2005; 102 (45) 16368-16373
  • 81 Diehl F, Schmidt K, Choti MA , et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008; 14 (9) 985-990
  • 82 Diaz Jr LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014; 32 (6) 579-586
  • 83 Shinozaki M, O'Day SJ, Kitago M , et al. Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res 2007; 13 (7) 2068-2074
  • 84 Dawson SJ, Tsui DW, Murtaza M , et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013; 368 (13) 1199-1209
  • 85 Newman AM, Bratman SV, To J , et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014; 20 (5) 548-554
  • 86 Newman AM, Lovejoy AF, Klass DM , et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol 2016; 34 (5) 547-555
  • 87 Lanman RB, Mortimer SA, Zill OA , et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS ONE 2015; 10 (10) e0140712